
SAT- ased Approaches to Adjusting,
Repairing, and Computing Largest

Extensions of Argumentation Frameworks

Tuomo LEHTONEN a, Andreas NISKANEN a and Matti JÄRVISALO a

a Helsinki Institute for Information Technology HIIT, Department of Computer Science,
University of Helsinki, Finland

Abstract. We present a computational study of effectiveness of declarative ap-
proaches for three optimization problems in the realm of abstract argumentation.
In the largest extension problem, the task is to compute a σ -extension of largest
cardinality (rather than, e.g., a subset-maximal extension) among the σ -extensions
of a given argumentation framework (AF). The two other problems considered deal
with a form of dynamics in AFs: given a subset S of arguments of an AF, the task is
to compute a closest σ -extension within a distance-based setting, either by repair-
ing S into a σ -extension of the AF, or by adjusting S to be a σ -extension containing
(or not containing) a given argument. For each of the problems, we consider both
iterative Boolean satisfiability (SAT) based approaches as well as directly solving
the problems via Boolean optimization using maximum satisfiability (MaxSAT)
solvers. We present results from an extensive empirical evaluation under several
AF semantics σ using the ICCMA 2017 competition instances and several state-of-
the-art solvers. The results indicate that the choice of the approach can play a sig-
nificant role in the ability to solve these problems, and that a specific MaxSAT ap-
proach yields quite generally good results. Furthermore, with impact on SAT-based
AF reasoning systems more generally, we demonstrate that, especially on dense
AFs, taking into account the local structure of AFs can have a significant positive
effect on the overall solving efficiency.

Keywords. abstract argumentation, argumentation dynamics, constraint optimization,
experimentation

1. Introduction

The study of computational models of argumentation is today a vibrant area of artificial
intelligence research [1] with promising applications in various fields [2]. The extension-
based setting of abstract argumentation frameworks (AFs) [3] is one of the central for-
malisms for representing and reasoning about knowledge within argumentation. Within
the last few years, a variety of systems for reasoning over AFs have emerged [4], the
development of which is also incentivized today by the ICCMA series of competitions
for implementations of AF reasoning systems [5].

Argumentation is intrinsically a dynamic process in which different conflicting
points of views evolve through interaction. While a majority of attention on imple-
menting reasoning over AFs has focused on central “static” problems, such as decid-

B

Computational Models of Argument
S. Modgil et al. (Eds.)
© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-906-5-193

193

ing whether a given argument is credulously or sceptically accepted in a given AF, the
study of argumentation dynamics has recently been investigated from various perspec-
tives, including expansions (see e.g. [6,7]), revision (e.g. [8,9,10,11,12]), and enforce-
ment (e.g. [13,14,15,16,17]).

This work constitutes a computational study of algorithmic approaches to three NP-
hard optimization problems addressing different aspects of argumentation frameworks.
In terms of static problems, we consider the problem of finding a largest extension—in
contrast to, e.g., a subset-maximal admissible set or a preferred extension, of a given
AF, with the intuition of finding a most open-minded or generally accepted viewpoint. In
terms of AF dynamics, we present a first computational study of dealing with the prob-
lems of adjusting and repairing a given subset of arguments in terms of a given AF [18].
In contrast to e.g. enforcing a set of arguments to constitute an extension by changing the
attack relation of an AF, in adjust and repair changes are applied to an actual subset of ar-
guments. More specifically, here the aim is to modify a set of arguments (by removing or
adding arguments to it) so that the set becomes an extension of a given (possibly earlier
changed) AF. The goal is to make the least adjustments possible within a distance-based
setting [19], thereby from the computational perspective giving rise to combinatorial op-
timization problems. In other words, we focus on computational approaches to adjusting
and repairing a point of view which is or has become unacceptable in terms of the cur-
rent state of the world, represented as an AF, due to e.g. revising the AF by adding new
arguments [6,7] or modifying the attack structure [13] to accommodate new knowledge.

Motivated by the success of applications of Boolean satisfiability (SAT) and max-
imum satisfiability (MaxSAT) solvers within AF systems for static and dynamic prob-
lems (see, e.g., [20,21,22]), we consider several variants of both iterative SAT-based ap-
proaches and direct MaxSAT encodings for each of these three problems. We present
results from an extensive empirical evaluation of these approaches on ICCMA 2017 in-
stances, focusing as first choices on three AF semantics (admissible, complete, and sta-
ble). To the best of our knowledge, the approaches we study here are the first considered
for the dynamic problems of adjust and repair. In terms of computing a largest extension,
we expand on previous work [23] by considering further alternative approaches. The re-
sults suggest guidelines for approaches to consider for developing computational tech-
niques for solving optimization problems arising from AF dynamics (among others). Ad-
ditionally, applicable to standard SAT encodings of AF semantics in general and thereby
of interest more generally for developing SAT-based argumentation systems, we show
that by taking into account the local structure of the AF at hand, the SAT encodings can
be generated faster, made smaller, and also can become noticeably faster to solve com-
pared to exactly implementing the clause generation according to the formal definition
of the SAT encodings.

2. Argumentation Frameworks

We shortly recall argumentation frameworks [3] and their semantics [24].

Definition 1. An argumentation framework (AF) is a pair F = (A,R), where A is a finite
set of arguments and R ⊆ A×A is the attack relation. The pair (a,b) ∈ R means that a
attacks b. An argument a ∈ A is defended (in F) by a set S ⊆ A if, for each b ∈ A such
that (b,a) ∈ R, there exists a c ∈ S such that (c,b) ∈ R.

T. Lehtonen et al. / SAT-Based Approaches194

a b c

d

e

Figure 1. Argumentation framework from Example 1.

Example 1. Let F = (A,R) be an AF with the set of arguments A = {a,b,c,d,e} and the
attack relation R = {(a,b),(b,a),(b,c),(c,d),(d,e),(e,c)}. The AF F is represented as a
directed graph in Figure 1.

Semantics for argumentation frameworks are functions σ assigning to each AF F
a collection σ(F) ⊆ 2A of σ -extensions (i.e., sets of jointly acceptable arguments with
respect to σ). In this work, we consider the admissible, complete, and stable semantics.
For the definitions we require the concepts of the characteristic function and the range.

Definition 2. For an AF F =(A,R), the characteristic function FF : 2A → 2A is FF(S)=
{x ∈ A | x is defended by S}. The range of S ⊆ A is S+R = S∪{x | (y,x) ∈ R,y ∈ S}.

The semantics considered here are then defined as follows.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F) if there are
no a,b ∈ S such that (a,b) ∈ R. We denote the collection of conflict-free sets of F by
cf (F). For a conflict-free set S ∈ cf (F) it holds that (i) S ∈ stb(F) (S is a stable extension)
iff S+R = A, (ii) S ∈ adm(F) (S is admissible) iff S ⊆ FF(S), and (iii) S ∈ com(F) (S is
complete) iff S = FF(S).

It is well-known that for any AFs F we have stb(F)⊆ com(F)⊆ adm(F).

Example 2. For the AF F in Example 1 we have stb(F) = {{b,d}}, adm(F) =
{ /0,{a},{b},{b,d}}, and com(F) = { /0,{a},{b,d}}.

3. Computational Problems

We continue by formally defining the computational problems considered in this work.
For the following, we standardly denote the cardinality of a finite set S by |S|, and define
argmaxx∈S f (x) = {x ∈ S | ∀y ∈ S : f (y) ≤ f (x)} and argminx∈S f (x) = {x ∈ S | ∀y ∈
S : f (y)≥ f (x)}.

The maximization problem of Largest Extension asks, given an AF F and a seman-
tics σ , to output a largest (in terms of set-cardinality) σ -extension in the AF F .

LARGEST EXTENSION

Input: AF F = (A,R) and semantics σ .
Task: Find an E∗ such that

E∗ ∈ argmax
E∈σ(F)

|E|.

Note that the solutions to Largest Extension coincide for σ ∈ {adm,com}.

T. Lehtonen et al. / SAT-Based Approaches 195

We also consider the optimization problems of repairing and adjusting an AF [18],
as forms of AF dynamics. The corresponding decision problems are W[1]-hard in gen-
eral when parameterized by the Hamming distance [18], and therefore the optimization
problems we consider here are not expected to be solvable in polynomial time.

For the following, the Hamming distance between two finite sets S1 and S2 is the
cardinality of the symmetric difference |S1ΔS2|= |S1 \S2|+ |S2 \S1|.

The minimization problem Repair asks, given an AF F , a subset S of arguments, and
a semantics σ , to find a non-empty σ -extension closest to S with respect to the Hamming
distance. In other words, we are asked to modify the set S into a σ -extension with the
minimum amount of additions and deletions of arguments.

REPAIR

Input: AF F = (A,R), S ⊆ A, and semantics σ .
Task: Find an E∗ such that

E∗ ∈ argmin
E∈σ(F): E
= /0

|EΔS|.

Finally, an instance of the problem Adjust consists of an AF F , a semantics σ , a
σ -extension E0 of the AF, and an argument t ∈ A. The task is to find another σ -extension
closest to E0 and, if t
∈ E0 (resp. t ∈ E0), containing (resp. not containing) t. In other
words, the task is to modify E0 into a σ -extension (not) containing t with as few additions
and deletions as possible.

ADJUST

Input: AF F = (A,R), semantics σ , E0 ∈ σ(F), and t ∈ A.
Task: Find an E∗ such that

E∗ ∈ argmin
E∈σ(F): t∈EΔE0

|EΔE0|.

Example 3. Consider again the AF F in Example 1, the extensions of which enumerated
in Example 2. Fix the semantics σ = adm. Now the optimal solution to Largest Exten-
sion with F as input is clearly {b,d}. Let S = {a,b}. Given F and S as input to the Repair
problem, there are now two optimal solutions—{a} and {b}—since the Hamming dis-
tance to S is in both cases exactly one. Consider now the extension {b} and the argument
d. Now the only solution to the Adjust problem with input F , E0 = {b}, and t = d is
{b,d}, with Hamming distance one.

4. SAT-Based Approaches

We now detail the computational approaches the relative efficiency of which we evaluate
in this work. We focus on what we refer to SAT-based approaches, i.e., using Boolean
satisfiability solvers and their extensions to Boolean optimization (MaxSAT solvers).

4.1. SAT and MaxSAT

For a variable x, there are two literals, x and ¬x. A clause is a disjunction (∨) of literals.
A truth assignment is a function from variables to {0,1}. A clause c is satisfied by a truth
assignment τ (τ(c) = 1) if τ(x) = 1 for a literal x in c, or τ(x) = 0 for a literal ¬x in c;

T. Lehtonen et al. / SAT-Based Approaches196

otherwise τ does not satisfy c (τ(c) = 0). The NP-complete Boolean satisfiability prob-
lem (SAT) asks whether there is a truth assignment that satisfies a given set of clauses,
i.e., a propositional formula in conjunctive normal form (CNF).

An instance ϕ = (ϕh,ϕs) of the Partial MaxSAT problem consists of a set ϕh of
hard clauses and a set ϕs of soft clauses. Any truth assignment τ that satisfies every
clause in ϕh is a solution to ϕ . The cost of a solution τ to ϕ is COST(ϕ,τ) = ∑c∈ϕs(1−
τ(c)), i.e., the number of soft clauses not satisfied by τ . A solution τ is optimal for ϕ if
COST(ϕ,τ)≤ COST(ϕ,τ ′) holds for any solution τ ′ to ϕ . Given ϕ , the Partial MaxSAT
problem asks to find an optimal solution to ϕ . From here on, we refer to Partial MaxSAT
simply as MaxSAT.

4.2. Encoding AF semantics as SAT

As a basis of the SAT and MaxSAT approaches, we employ the standard CNF encodings
of the AF semantics, following [25]. Let F = (A,R) be an AF. Define for each argument
a ∈ A a Boolean variable xa. Given a semantics σ , the variables set to true in the formula
ϕσ (F) encode a σ -extension of F , i.e., {a ∈ A | τ(xa) = 1} ∈ σ(F) for any satisfying
truth assigment τ of ϕσ (F). Now conflict-free sets can be expressed via the propositional
formula ϕcf (F) =

∧
(a,b)∈R(¬xa∨¬xb), stating that no attacks can occur in the extension.

Admissible sets are encoded by ϕadm(F) = ϕcf (F)∧∧
(b,a)∈R

(
xa →

(∨
(c,b)∈R xc

))
, re-

quiring that each argument is defended by the extension. Complete semantics have the
additional requirement of including every argument that is defended by the extension:
ϕcom(F) = ϕadm(F)∧∧

a∈A

((∧
(b,a)∈R

(∨
(c,b)∈R xc

))
→ xa

)
. Finally, stable semantics

is encoded by the formula ϕstb(F) = ϕcf (F)∧∧
a∈A

(
¬xa →∨

(b,a)∈R xb

)
.

4.3. Extension Enumeration for Largest Extension

For the Largest Extension problem, a baseline approach is to enumerate all extensions.
Intuitively, this approach can be reasonable especially when the number of extensions of
a given AF is small. A refinement of this approach we will consider in our experiments is
to iteratively rule out all subsets of the already enumerated extensions from subsequent
enumeration. For implementing this idea, we use a SAT solver incrementally: after each
found solution, representing an extension E, we add the clause

∨
a∈A\E xa to the solver,

and continue the SAT search without altering the state of the solver otherwise.

4.4. Iterative SAT

Intuitively, the cost functions for each of the problems of Largest Extension, Repair, and
Adjust, can be seen as computing the Hamming distance k to a subset of arguments of
particular size. For solving each of the problems exactly, a SAT solver can be used in
an iterative manner, iterating over the possible values k ∈ {0, . . . , |A|}. For each value
of k, the SAT solver call will consist of asking whether there is an extension (i) within
distance |A|−k from A in the Largest Extension problem, (ii) within distance k from S in
Repair, and (iii) within distance k from E0, (not) containing t in Adjust. In practice, the
clauses for the SAT solver calls consist of the encoding of the semantics at hand and an
encoding of a cardinality constraint, bounding the distance within k. For Adjust we also

T. Lehtonen et al. / SAT-Based Approaches 197

have the additional hard clause (xt) (if t ∈ A\E0) or (¬xt) (if t ∈ E0), to ensure that t is
properly taken into account.

For the iteration process, we will consider the following iteration strategies.

Stepping: A simple strategy is to increment k = 0, . . . linearly, and to terminate when
the satisfiability status changes from the previous SAT solver calls. For Largest
Extension, termination happens when the SAT solver reports unsatisfiability, at
which time the extension found via the last satisfiable solver call is an optimal
solution. This strategy is refined by incrementing k to the size of the latest found
extension + 1 (instead of a unit increment). For Repair and Adjust, this strategy
repeatedly asks for an extension within k = 0, . . . changes to the current set of
arguments until a call is satisfiable, giving a closest extension.

Binary: The binary search strategy implements binary search over k ∈ [0, |A|]. For
Largest Extension, this amounts to iteratively querying whether there are exten-
sions greater than or equal to the midpoint between the current lower and upper
bounds, until the bounds meet. For Repair and Adjust, the SAT solver calls consti-
tute asking for an extension within distance equal to the midpoint from the given
set of arguments.

Progressive: Another strategy is to start the search from k = 0, but instead of the conser-
vative increments of Stepping, increase k in progressively larger steps: after each
call, the size of the step by which k is increased is doubled, until a limit is reached.
The limits are (i) surpassing the upper bound, and (ii) the call being unsatisfiable
for Largest Extension and the call being satisfiable for Repair and Adjust. When
either of these conditions is met, the size of the increase is returned to 1 and the
search continues from the lower bound. The answer is reached when the bounds
meet. A modification of this strategy for Largest Extension is to not only increase
k by the value of the step, but to first increase k to be equal to the size of the found
extension.

For Largest Extension, an initial lower bound on k is obtained by making the first
SAT solver call without enforcing the cardinality constraint, and taking the distance ob-
tained from the extension reported by the SAT solver as the lower bound.

For encoding the required cardinality constraints as clauses, we consider two al-
ternative cardinality constraint encodings that are often used in practice: sequential
counter [26] and cardinality networks [27]. The sequential counter encoding implements
a sequential counter circuit via O(nk) clauses and O(nk) auxiliary variables for an ≤ k
cardinality constraint over n variables, with the intuition of computing partial sums of
over the inputs, sequentially considering an increasing number of the input bits. Cardi-
nality networks implement sorting algorithms based on pair-wise comparisons of bits
using O(n log2 n) clauses and auxiliary variables. At the same time, and importantly for
iterative applications, they allow for incremental use of SAT solvers for iterating over
k, since the cardinality constraint for different values of k can be enforced by assuming
that the kth bit of the output of the network takes the value 0, i.e., without changing the
structure of the actual network or its clausal encoding.

4.5. MaxSAT

Instead of using a hand-crafted iterative SAT approach, another more direct approach to
solving the considered optimization problems of Largest Extension, Repair, and Adjust,

T. Lehtonen et al. / SAT-Based Approaches198

is to employ a MaxSAT solver. For this approach, the clauses encoding the AF semantics
are considered hard clauses. Unit soft clauses over the xa variables are used for expressing
cost function at hand for the individual problems as follows.

Largest Extension: A largest extension is one whose Hamming distance to the full set
of arguments is the smallest. In the MaxSAT encoding, for each argument a we
have the soft clause (xa), stating that by leaving a out of the extension sought for,
unit cost is incurred.

Repair: We express the Hamming distance to the extensions nearest to S by having for
each argument a ∈ S the soft clause (xa) and for each argument a ∈ A\S the soft
clause (¬xa).

Adjust: The soft clauses are the same as for Repair, substituting S by E0. However, we
also have the additional hard clause (xt) (if t ∈ A\E0) or (¬xt) (if t ∈ E0).

5. Empirical Evaluation

We implemented the SAT and MaxSAT approaches described in this work. In this sec-
tion we present the results of an extensive evaluation of the different techniques for all
three problems. All experiments were run on 2.83-GHz Intel Xeon E5440 quad-core ma-
chines with 32-GB RAM. For each instance, a timeout of 900 seconds was enforced.
Our implementation and benchmark, as well as more detailed results, are available at
http://www.cs.helsinki.fi/group/coreo/comma18/.

For the experiments, we used MiniSAT (version 2.2.0) [30] as a standard choice of a
SAT solver in the iterative approaches. For generating the cardinality networks, we used
the functionality offered by MaxPre [31]. For solving the MaxSAT encodings, we con-
sider the following state-of-the-art SAT-based MaxSAT solvers using their default con-
figurations: MaxHS (2.9.0) [32], Maxino (kdyn) [33], MSCG (2014) [34], OpenWBO
(1.3.1) [35], and QMaxSAT (14.04) [36]. QMaxSAT implements a model-guided ap-
proach, using a SAT solver to iteratively find better solutions. Maxino, MSCG, and Open-
WBO implement different variants of the popular core-guided approach, consisting of
iteratively extracting unsatisfiable subsets (cores) of soft clauses using a SAT solver and
compiling the cores into the working formula at each iteration via cardinality constraints
modifications to the formula. MaxHS, on the other hand, implements the so-called im-
plicit hitting set approach, iteratively using SAT solver for core extraction and an inte-
ger programming solver to find hitting sets over the accumulated set of cores, without
changing the input instance, in contrast to the other approaches.

5.1. Benchmarks

We used the ICCMA 2017 benchmarks, described in more detail in [28].

Largest Extension. The instances are the sets A and B, each comprising of 350 AFs.
The set A is used for admissible and complete semantics and set B for stable.

Repair. For each base AF, nine repair queries were generated by picking random sets
of arguments of size 0.1, 0.3 and 0.5, three sets of each relative size. Thus there were
3150 instances for each admissible/complete and stable queries.

T. Lehtonen et al. / SAT-Based Approaches 199

Adjust. A total of 1085 and 735 instances were generated from the set A for admissible
and complete semantics, respectively, and 520 instances from the set B for stable seman-
tics. As each adjust query contains an extension, the number of instances is constrained
by our ability to find extensions. For each base AF for which five or more extensions
were found by enumerating under a time limit of 15 minutes, five extensions were se-
lected at random, and a query argument was selected outside the query extension from
the union of all extensions. This ensured that all queries were satisfiable.

5.2. CNF Generation

When generating the propositional encodings, we use the following observations in our
implementation.

• Self-attacks: If (a,a) ∈ R for a ∈ A, then xa = 0. Therefore we do not generate
the clause ¬xa ∨¬xb encoding conflict-freeness for any b ∈ A, nor the clauses
encoding admissibility where xa is the antecedent, and instead generate the unit
clause (¬xa).

• Self-defence: If (a,b),(b,a) ∈ R, then for any extension E with a ∈ E, we know
that a defends itself against b ∈ A\E (and vice versa). Therefore we do not gener-
ate the clauses encoding “admissibility” related to a and b.

Especially for very dense frameworks, such as those in the ABA2AF (filename afin-
put) family of instances in ICCMA 2017, arising from translating assumption-based ar-
gumentation frameworks into AFs [29], these simple observations can be very helpful in
practice. We will provide empirical data supporting this idea in Section 5.4.

5.3. Results

We give an overview of the results by discussing a selection of combinations of the prob-
lem and the choice of semantics; more detailed results are available in the online supple-
ment. An overview of the relative efficiency of all of the considered approaches is pro-
vided in Figure 2 (Largest Extension problem under admissible semantics), Figure 3 (Re-
pair under stable semantics), and Figure 4 (Adjust under complete semantics), illustrat-
ing for each solver the number of instances solved (x-axis) under a specific per-instance
time limit (y-axis). For the iterative SAT-based approaches, here stepping, bsearch, and
prog refer to the Stepping, Binary, and Progressive iteration strategies, respectively, and
CN and SC refer to cardinality network and sequential counter encodings, respectively.

Generally the MaxSAT approach seems the strongest, as a MaxSAT solver solved
the most instances in each of the considered problem/semantics combinations except for
Adjust under admissible semantics, where CN prog solved all instances while QMaxSAT
timed out in one. The comparison between QMaxSAT and CN prog in this prob-
lem/semantics combination is shown in the right of Figure 5. The best MaxSAT solver
for each combination varies. QMaxSAT was able to solve the most instances in two of the
combinations: in Largest Extension under admissible semantics and in Repair under both
admissible and complete semantics. QMaxSAT also tied for first place in Adjust under
complete and stable semantics and was the fastest approach. QMaxSAT was also robust,
being among the top approaches in every problem/semantic combination unlike any other
considered approach. Each of Maxino, MSCG and MaxHS solved most instances in one

T. Lehtonen et al. / SAT-Based Approaches200

150 200 250 300

0
20

0
40

0
60

0
80

0

instances solved

C
P

U
 ti

m
e

in
 s

ec
on

ds

●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●

●●●●●●
●●

●●●●
●●

●●●
●●●●

●●●
●●

●●
●
●●

●
●
●●●

●●
●●

●

●
●●●

●
●

●

●
●

●

●

●

●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●

●●●●●
●●●

●●●
●●

●●
●●●●

●●
●●●

●

●
●

●

●●
●●

●●
●●

●

●

●
●

●

●

●

●

●

QMaxSAT
CN prog
CN stepping
MaxHS
CN bsearch
SC prog
MSCG
SC stepping
enumeration
Maxino
OpenWBO
SC bsearch

Figure 2. Largest Extension, admissible semantics

1400 1600 1800 2000 2200 2400 2600

0
20

0
40

0
60

0
80

0

instances solved
C

P
U

 ti
m

e
in

 s
ec

on
ds

●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●
●●●
●●
●
●●
●●

●
●●●●
●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●
●●●
●
●

●

●●
●●●●●
●●●●●●

●●●
●

●●
●

●●
●●●
●●●●
●●

●

Maxino
QMaxSAT
MSCG
MaxHS
OpenWBO
CN prog
SC prog

Figure 3. Repair, stable semantics

640 660 680 700 720

0
20

0
40

0
60

0
80

0

instances solved

C
P

U
 ti

m
e

in
 s

ec
on

ds

●●●

●●●●●●

●●
●●●●●

●●●●●
●

●

●

QMaxSAT
CN prog
OpenWBO
SC prog
MSCG
Maxino
MaxHS

Figure 4. Adjust, complete semantics

problem/semantics pair. Maxino did so in Repair under complete semantics, MaxHS in
Largest Extension under stable semantics, and MSCG narrowly beat QMaxSAT with one
more solved instance in Repair under admissible semantics.

In some cases iterative strategies outperform MaxSAT. CN prog is competitive in
Adjust in particular, being the only approach able to solve all instances under admissible
for Adjust. Under complete semantics it tied with QMaxSAT for first place (CN prog had
over two times larger cumulative running time, however). Moreover, in Largest Extension
under admissible semantics, CN prog and CN stepping both solved more instances than
any other MaxSAT solver except for the winner, QMaxSAT.

A closer look at the relative performance of the best iterative SAT-based and the best
MaxSAT approach for a specific (problem, semantics) pair is provided in Figure 5 for
Repair under stable semantics (left, Maxino (MaxSAT) vs CN prog) and for Adjust un-
der admissible semantics (right, QMaxSAT vs CN prog). While the MaxSAT approach

T. Lehtonen et al. / SAT-Based Approaches 201

●●

●

●
●
●●●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●●●●
●
●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

0 200 400 600 800

0
20

0
40

0
60

0
80

0

CPU time in seconds for Maxino

C
P

U
 ti

m
e

in
 s

ec
on

ds
 fo

r C
N

 p
ro

g

●

●

AdmBuster
ABA2AF
Traffic
BA
Planning2AF
ER
Grounded
SCC
SemBuster
Stable
WS

●●
●●●●●
●●●●●
●●●●●

●●●●●

●

●

●●●

●●●●●

●●●●●

●

●

●●

● ●●●

●

●

●●●
●●

●●●●●

●●●●●●●●●●●●●●●

0 200 400 600 800

0
20

0
40

0
60

0
80

0

CPU time in seconds for QMaxSAT

C
P

U
 ti

m
e

in
 s

ec
on

ds
 fo

r C
N

 p
ro

g

●

●

AdmBuster
ABA2AF
Traffic
BA
Planning2AF
Grounded
SCC
SemBuster
Stable
WS

Figure 5. Best MaxSAT solver vs iterative SAT approach. Left: Repair stable, Maxino (MaxSAT) vs CN prog
(progressive iterative SAT using cardinality networks). Right: Adjust admissible, QMaxSAT vs CN prog.

is clearly more effective overall, we observe that for specific families of instances, espe-
cially on the instance family Sembuster for Maxino and the instance family Stable for
both Maxino and QMaxSAT, there are a significant number of instances on which the
progressive iterative SAT approach performs better.

Overall, considering all of the problems and semantics, the model-guided approach
as implemented in QMaxSAT would seem to the best single choice for solving these
problems, exhibiting consistently good performance. Among the iterative SAT-based ap-
proaches, the choice of the applied cardinality encoding clearly matters, potentially due
the fact that cardinality networks enable a fully incremental approach.

5.4. Effects of CNF Generation

Finally, we return to the effects of the revised CNF generation approach we applied
in these experiments (recall Section 5.2). Compared to the standard CNF generation
approach, the revised approach allows for not generating some of the clauses required for
enforcing conflict-freeness and admissibility based on local structures in AFs that occur
intuitively very frequently in dense AFs. One such family of very dense AFs is that of
ABA2AF in the ICCMA 2017 benchmarks, totalling at 32 AFs.

Table 1 shows the cumulative effects of applying the revised CNF generation ap-
proach on the ABA2AF AFs. Compared to the standard approach, we observe a notice-
able positive effect on both the size of the generated CNF formulas and the time spent on
generating them: on average, the generated CNFs are 1.0% of the size of the CNFs gen-
erated with the the standard approach, and take only 35.7% of the time to be generated
compared to the time needed when using the standard approach. Beyond the generation
aspects, we also observed a noticeable effect on solver running times: on the Largest Ex-
tension problem, the cumulative running time of QMaxSAT after the revised approach
was 1.2% of that after using the standard approach.

T. Lehtonen et al. / SAT-Based Approaches202

Table 1. Effects of revised CNF generation (recall Section 5.2) on the dense 32 AFs in the ABA2AF ICCMA
2017 benchmark family: cumulative size of the CNF instances (in megabytes), generation times in seconds
(not including possible writing to disk), and solving times for Largest Extension using QMaxSAT in seconds.

Generation approach CNF size (Mb) Generation time (s) Solving time (s)

Standard 66303.9 95.4 989.3
Revised 689.5 34.1 11.9

6. Conclusions

We presented a first computational study of applying SAT-based approaches to the dy-
namic problems of adjusting and repairing extensions in terms of a given AF, and further
evaluated the approaches also on the problem of computing a largest extension. The re-
sults indicate that, while the performance on individual solvers can vary even noticeably
depending on the underlying problem domain and semantics, MaxSAT currently offers
effective tools to solving these problems. Going beyond the problems focused on in this
paper, we showed that taking the local structure of an AF at hand into account within
the process of generating the propositional encoding of the argumentation semantics can
have a noticeable positive impact in terms of the generation time, encoding size, as well
as the subsequent solving time, which we believe to be of interest more generally for
improving the overall efficiency of SAT-based systems for argumentation.

Acknowledgements

This work was financially supported by Academy of Finland (grants 276412 and 312662)
and DoCS Doctoral Programme in Computer Science of the University of Helsinki.

References

[1] T. Bench-Capon and P. E. Dunne, “Argumentation in artificial intelligence,” Artificial Intelligence,
vol. 171, no. 10-15, pp. 619–641, 2007.

[2] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed, G. R. Simari, M. Thimm, and
S. Villata, “Towards artificial argumentation,” AI Magazine, vol. 38, no. 3, pp. 25–36, 2017.

[3] P. M. Dung, “On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games,” Artif. Intell., vol. 77, no. 2, pp. 321–358, 1995.

[4] G. Charwat, W. Dvorák, S. A. Gaggl, J. P. Wallner, and S. Woltran, “Methods for solving reasoning
problems in abstract argumentation - A survey,” Artif. Intell., vol. 220, pp. 28–63, 2015.

[5] M. Thimm and S. Villata, “The first international competition on computational models of argumenta-
tion: Results and analysis,” Artif. Intell., vol. 252, pp. 267–294, 2017.

[6] C. Cayrol, F. D. de Saint-Cyr, and M. Lagasquie-Schiex, “Change in abstract argumentation frameworks:
Adding an argument,” J. Artif. Intell. Res., vol. 38, pp. 49–84, 2010.

[7] R. Baumann, “Normal and strong expansion equivalence for argumentation frameworks,” Artif. Intell.,
vol. 193, pp. 18–44, 2012.

[8] R. Booth, S. Kaci, T. Rienstra, and L. W. N. van der Torre, “A logical theory about dynamics in abstract
argumentation,” in Proc. SUM, vol. 8078 of LNCS, pp. 148–161, Springer, 2013.

[9] S. Coste-Marquis, S. Konieczny, J. Mailly, and P. Marquis, “A translation-based approach for revision
of argumentation frameworks,” in Proc. JELIA, vol. 8761 of LNCS, pp. 397–411, Springer, 2014.

[10] S. Coste-Marquis, S. Konieczny, J. Mailly, and P. Marquis, “On the revision of argumentation systems:
Minimal change of arguments statuses,” in Proc. KR, pp. 52–61, AAAI Press, 2014.

[11] M. Diller, A. Haret, T. Linsbichler, S. Rümmele, and S. Woltran, “An extension-based approach to belief
revision in abstract argumentation,” in Proc. IJCAI, pp. 2926–2932, AAAI Press, 2015.

T. Lehtonen et al. / SAT-Based Approaches 203

[12] R. Baumann and G. Brewka, “AGM meets abstract argumentation: Expansion and revision for Dung
frameworks,” in Proc. IJCAI, pp. 2734–2740, AAAI Press, 2015.

[13] R. Baumann, “What does it take to enforce an argument? Minimal change in abstract argumentation,” in
Proc. ECAI, vol. 242 of FAIA, pp. 127–132, IOS Press, 2012.

[14] P. Bisquert, C. Cayrol, F. D. de Saint-Cyr, and M. Lagasquie-Schiex, “Enforcement in argumentation is
a kind of update,” in Proc. SUM, vol. 8078 of LNCS, pp. 30–43, Springer, 2013.

[15] S. Doutre, A. Herzig, and L. Perrussel, “A dynamic logic framework for abstract argumentation,” in
Proc. KR, pp. 62–71, AAAI Press, 2014.

[16] S. Coste-Marquis, S. Konieczny, J. Mailly, and P. Marquis, “Extension enforcement in abstract argu-
mentation as an optimization problem,” in Proc. IJCAI, pp. 2876–2882, AAAI Press, 2015.

[17] J. P. Wallner, A. Niskanen, and M. Järvisalo, “Complexity results and algorithms for extension enforce-
ment in abstract argumentation,” J. Artif. Intell. Res., vol. 60, pp. 1–40, 2017.

[18] E. J. Kim, S. Ordyniak, and S. Szeider, “The complexity of repairing, adjusting, and aggregating of ex-
tensions in abstract argumentation,” in TAFA 2013 Revised Selected Papers, vol. 8306 of LNCS, pp. 158–
175, Springer, 2014.

[19] R. Booth, M. Caminada, M. Podlaszewski, and I. Rahwan, “Quantifying disagreement in argument-
based reasoning,” in Proc. AAMAS, pp. 493–500, IFAAMAS, 2012.

[20] W. Dvorák, M. Järvisalo, J. P. Wallner, and S. Woltran, “Complexity-sensitive decision procedures for
abstract argumentation,” Artif. Intell., vol. 206, pp. 53–78, 2014.

[21] F. Cerutti, M. Giacomin, and M. Vallati, “ArgSemSAT: Solving argumentation problems using SAT,” in
Proc. COMMA, pp. 455–456, 2014.

[22] A. Niskanen, J. P. Wallner, and M. Järvisalo, “Optimal status enforcement in abstract argumentation,” in
Proc. IJCAI, pp. 1216–1222, IJCAI/AAAI Press, 2016.

[23] W. Faber, M. Vallati, F. Cerutti, and M. Giacomin, “Solving set optimization problems by cardinality
optimization with an application to argumentation,” in Proc. ECAI, vol. 285 of FAIA, pp. 966–973, IOS
Press, 2016.

[24] P. Baroni, M. Caminada, and M. Giacomin, “An introduction to argumentation semantics,” Knowledge
Eng. Review, vol. 26, no. 4, pp. 365–410, 2011.

[25] P. Besnard and S. Doutre, “Checking the acceptability of a set of arguments,” in Proc. NMR, pp. 59–64,
2004.

[26] C. Sinz, “Towards an optimal CNF encoding of Boolean cardinality constraints,” in Proc. CP, vol. 3709
of LNCS, pp. 827–831, Springer, 2005.

[27] R. Ası́n, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell, “Cardinality networks: a theoretical
and empirical study,” Constraints, vol. 16, no. 2, pp. 195–221, 2011.

[28] S. A. Gaggl, T. Linsbichler, M. Maratea, and S. Woltran, “Benchmark selection at ICCMA’17,” 2018.
http://argumentationcompetition.org/2017/benchmark_selection_iccma2017.pdf.

[29] T. Lehtonen, J. P. Wallner, and M. Järvisalo, “From structured to abstract argumentation: Assumption-
based acceptance via AF reasoning,” in Proc. ECSQARU, vol. 10369 of LNCS, pp. 57–68, Springer,
2017.

[30] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT 2003 Selected Revised Papers, vol. 2919
of LNCS, pp. 502–518, Springer, 2004.

[31] T. Korhonen, J. Berg, P. Saikko, and M. Järvisalo, “MaxPre: An extended MaxSAT preprocessor,” in
Proc. SAT, vol. 10491 of LNCS, pp. 449–456, Springer, 2017.

[32] J. Davies and F. Bacchus, “Exploiting the power of MIP solvers in MAXSAT,” in Proc. SAT, vol. 7962
of LNCS, pp. 166–181, Springer, 2013.

[33] M. Alviano, C. Dodaro, and F. Ricca, “A MaxSAT algorithm using cardinality constraints of bounded
size,” in Proc. IJCAI, pp. 2677–2683, AAAI Press, 2015.

[34] A. Morgado, A. Ignatiev, and J. Marques-Silva, “MSCG: Robust core-guided MaxSAT solving,” Journal
of Satisfiability, Boolean Modeling and Computation, vol. 9, pp. 129–134, 2014.

[35] R. Martins, V. M. Manquinho, and I. Lynce, “Open-WBO: A modular MaxSAT solver,,” in Proc. SAT,
vol. 8561 of LNCS, pp. 438–445, Springer, 2014.

[36] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “QMaxSAT: A partial Max-SAT solver,” Journal
of Satisfiability, Boolean Modeling and Computation, vol. 8, no. 1/2, pp. 95–100, 2012.

T. Lehtonen et al. / SAT-Based Approaches204

