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Abstract. We propose natural generalizations of the credulous and skeptical ac-
ceptance problems in abstract argumentation for incomplete argumentation frame-
works [3]. This continues earlier work on a similar generalization of the verification
problem. We provide a full analysis of the computational complexity of the gener-
alized problems for all original semantics, showing that, in almost all cases, accep-
tance problems for incomplete argumentation frameworks are significantly harder
than the respective problems for argumentation frameworks without uncertainty.
All our hardness results for the classes NP, coNP, Πp

2 , and Σp
2 are derived from one

generic reduction.
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1. Introduction

Abstract argumentation frameworks [11] are a formal model that represents an argumen-
tation by a set of atomic arguments and an attack relation between arguments. Unquan-
tified uncertainty about the existence of particular attacks or arguments in abstract ar-
gumentation frameworks was first introduced by Coste-Marquis et al. [6] for the set of
attacks and by Baumeister et al. [4] for the set of arguments. Baumeister et al. [3] subse-
quently generalized both models to incomplete argumentation frameworks, which allow
uncertainty about both arguments and attacks. An incomplete argumentation framework
can be seen as a representation of a set of possible worlds, called completions, each of
which is a standard argumentation framework that shares all definite elements of the
incomplete framework and where each of its uncertain elements is either included or
excluded. Existing problems for argumentation frameworks can then be generalized to
incomplete argumentation frameworks by either asking whether they are satisfied pos-
sibly (in at least one completion) or necessarily (in all completions), i.e., whether the
uncertainty either can or must be resolved in a way that satisfies the conditions of the
given problem. In applications, that answer may help with decisions in strategic sce-
narios, where the uncertainty represents possible moves. In scenarios where uncertainty
represents missing information, the preliminary answer may be sufficient for the task at
hand, removing the need to actually resolve the uncertainty.

In this paper, we continue that line of research and turn to the well-understood prob-
lems of credulous and skeptical acceptance, which are parameterized by a semantics
and, for a given argumentation framework and an argument in that framework, either
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ask whether that argument is in at least one extension (for credulous acceptance) or all
extensions (for skeptical acceptance) of the framework with respect to the semantics.
For incomplete argumentation frameworks, we study the following four problem com-
binations, each of which covers interesting questions that arise in different application
scenarios.

• Possible Credulous Acceptance: Is there any way to accept the given argument?
• Necessary Credulous Acceptance: Is the given argument in at least one extension,

regardless of how the uncertainty is resolved?
• Possible Skeptical Acceptance: Can the uncertainty be resolved in such a way

that the given argument is in all extensions?
• Necessary Skeptical Acceptance: Is the given argument absolutely guaranteed to

be accepted?

We continue with formal definitions of the required notions in Section 2, followed
by a full analysis of the complexity of possible and necessary acceptance problems in
incomplete argumentation frameworks in Section 3, and a conclusion in Section 4.

2. Model

We decribe the standard model of (abstract) argumentation framework in Section 2.1,
including the skeptical and credulous acceptance problems, and we introduce the more
general model of incomplete argumentation framework in Section 2.2.

2.1. Argumentation Frameworks

An argumentation framework AF = 〈A ,R〉 consists of a finite set A of arguments and
a binary attack relation R ⊆ A ×A on the arguments, where (a,b) ∈ R indicates that
a attacks b. An argument a ∈ A is defended by a set A ⊆ A of arguments in AF if, for
each attacker b ∈ A of a with (b,a) ∈ R, there is a defender d ∈ A with (d,b) ∈ R.
The characteristic function of AF , FAF : 2A → 2A , outputs all arguments defended by
a given set, i.e., FAF(A) = {a ∈ A | a is defended by A in AF}. Fk

AF denotes the k-fold
composition of FAF , and F∗

AF denotes its infinite composition. A set A⊆A is conflict-free
(CF) if (a,b) �∈ R for all a,b ∈ A. A conflict-free set A ⊆ A is further admissible (AD)
if A ⊆ FAF(A), complete (CP) if A = FAF(A), grounded (GR) if A = F∗

AF( /0), preferred
(PR) if A is admissible and has no admissible superset, and stable (ST) if for every b ∈
A \A there is an a ∈ A with (a,b) ∈ R. A set of arguments that satisfies one of these
semantics is called an extension of the argumentation framework with respect to that
semantics. Every stable extension is preferred, every preferred extension is complete,
every complete extension is admissible, and every admissible set is conflict-free. Further,
the unique grounded extension is complete. There are argumentation frameworks that
have no stable extension, all other extensions are guaranteed to exist.

We study the credulous acceptance and skeptical acceptance problems in argumen-
tation frameworks, which were first defined by Dunne and Bench-Capon [12] for the
preferred semantics alone, but that have since been adopted for various other semantics.
The problems are defined as follows, where s ∈ {CF,AD,CP,GR, PR, ST} is a placeholder
for any of the above semantics.
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s-CREDULOUS-ACCEPTANCE (s-CA)

Given: An argumentation framework 〈A ,R〉 and an argument a ∈ A .
Question: Is there an s extension E of 〈A ,R〉 with a ∈ E ?

s-SKEPTICAL-ACCEPTANCE (s-SA)

Given: An argumentation framework 〈A ,R〉 and an argument a ∈ A .
Question: For all s extensions E of 〈A ,R〉, does a ∈ E hold?

The stable semantics is a special case, since there may be no stable extension in
an argumentation framework. We use the standard formalization of ST-SA which has a
“yes” answer for all instances where there is no stable extension, following the conven-
tion that a universal quantifier over an empty space defaults to true. This problem was
shown to be coNP-complete by Dimopoulos and Torres [10]. However, this means that
it is possible for an argument to be skeptically accepted but at the same time not cred-
ulously accepted, which may be undesired. An alternative formalization incorporates an
exception for instances without stable extensions, treating them as “no”-instances. In this
case, the skeptical acceptance problem is even DP-complete (see [13]), where DP (the
second level of the boolean hierarchy over NP) is the class of differences of any two NP
sets and contains both NP and coNP. We leave the analysis of this variant in the context
of incomplete argumentation frameworks to future work.

We make a few observations about the CA and SA problems that will be used later.

Observation 1. Skeptical acceptance for CF and AD is trivial: The empty set is always
conflict-free and admissible, so the answer is always “no” for all problem instances.

Observation 2. Since the grounded extension is unique, there is no difference between
skeptical and credulous acceptance for the grounded semantics, i.e., GR-CA = GR-SA.

Observation 3. Since the grounded extension is exactly the intersection of all complete
extensions, skeptical acceptance of an argument is the same for the grounded and the
complete semantics: GR-SA = CP-SA.

Note that Observations 2 and 3 together yield that GR-CA = GR-SA = CP-SA.

Observation 4. The credulous acceptance problem is the same for the admissible and
the preferred semantics (AD-CA = PR-CA): An argument is a member of (at least) one
preferred extension if and only if it is in (at least) one admissible extension, since every
preferred set is admissible and every admissible set is a subset of some preferred set.

The computational complexity of CA and SA for the six semantics considered in
this paper was studied by Dimopoulos and Torres [10], Coste-Marquis et al. [7], and
Dunne and Bench-Capon [12]. We present their results together with our new findings in
Table 2 in Section 4.

2.2. Incomplete Argumentation Frameworks

An incomplete argumentation framework 〈A ,A ?,R,R?〉 splits both the set of argu-
ments and the set of attacks into two disjoint parts, a definite part (A and R) and an un-
certain part (A ? and R?), where both attack types are subsets of (A ∪A ?)×(A ∪A ?).
For uncertain elements (members of A ? or R?), it is not known whether they are part
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of the argumentation—they might be added or removed in the future, or the uncertainty
may just represent the limited knowledge of some agent about those elements. Definite
arguments (elements of A ) are known to exist, while definite attacks (elements of R) ex-
ist if and only if both incident arguments exist, too. To account for this, we call attacks in
R that are incident to at least one uncertain argument conditionally definite, since these
attacks may vanish alongside an incident uncertain argument, while attacks in R that
are only incident to definite arguments are called definite. If A ? = /0, we have a purely
attack-incomplete argumentation framework; for R? = /0, a purely argument-incomplete
argumentation framework; and A ? =R? = /0 yields standard argumentation frameworks
without uncertainty. An attack-incomplete argumentation framework may be abbreviated
as 〈A ,R,R?〉 and an argument-incomplete argumentation framework as 〈A ,A ?,R〉.

Example 5. An argumentation framework can be identified with a directed graph by
representing arguments as nodes and attacks as directed edges. Figure 1 is a graph repre-
sentation of the incomplete argumentation framework 〈A ,A ?,R,R?〉 with A = {b,c},
A ? = {a,d}, R = {(a,b),(b,b),(d,c)}, and R? = {(b,c),(c,d)}, where definite el-
ements are solid (circles for arguments or arrows for attacks), uncertain elements are
dashed, and conditionally definite attacks are dash-dotted.

a b c d

Figure 1. Graph representation of the incomplete argumentation framework in Example 5

A completion of an incomplete argumentation framework AF = 〈A ,A ?,R,R?〉 is
any argumentation framework AF∗ = 〈A ∗,R∗〉 that satisfies A ⊆ A ∗ ⊆ A ∪A ? and
R|A ∗ ⊆ R∗ ⊆ (

R ∪R?
) |A ∗ . Here, the restriction R|A ∗ of an attack relation R to A ∗

is defined as R|A ∗ = {(a,b) ∈ R | a,b ∈ A ∗}. It represents the fact that conditionally
definite attacks can only be part of a completion which includes that argument. How-
ever, a conditionally definite attack must be present in all completions containing both
incident arguments, while an uncertain attack may vanish in a completion that contains
both of its incident arguments. If at least one completion of an incomplete argumentation
framework AF satisfies some property, this property is said to hold possibly for AF . On
the other hand, if all completions of AF satisfy a property, it is said to hold necessarily
for AF . Accordingly, we define both a possible and a necessary variant of the s-CA and
s-SA problems for incomplete argumentation frameworks, for each semantics s consid-
ered here:

s-NECESSARY-CREDULOUS-ACCEPTANCE (s-NCA)

Given: An incomplete argumentation framework 〈A ,A ?,R,R?〉 and an
argument a ∈ A .

Question: Is it true that for each completion AF∗ = 〈A ∗,R∗〉 of
〈A ,A ?,R,R?〉, there exists an s extension E of AF∗ with a ∈ E ?
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s-POSSIBLE-SKEPTICAL-ACCEPTANCE (s-PSA)

Given: An incomplete argumentation framework 〈A ,A ?,R,R?〉 and an
argument a ∈ A .

Question: Does there exist a completion AF∗ = 〈A ∗,R∗〉 of 〈A ,A ?,R,R?〉
such that for each s extension E of AF∗, we have a ∈ E ?

We define s-POSSIBLE-CREDULOUS-ACCEPTANCE (s-PCA) analogously to s-
NCA, except that we now quantify existentially over all completions AF∗, and we de-
fine s-NECESSARY-SKEPTICAL-ACCEPTANCE (s-NSA) analogously to s-PSA, except
that we now quantify universally over all completions AF∗. Note that for the skep-
tical acceptance problems it is equivalent to ask whether each set of arguments that
does not include a is not s in AF∗. This alternative quantifier formulation allows us
to directly derive upper bounds. Due to Observations 2, 3, and 4, we have the fol-
lowing equalities: GR-PCA = GR-PSA = CP-PSA, GR-NCA = GR-NSA = CP-NSA,
AD-PCA = PR-PCA, and AD-NCA = PR-NCA.

Note that we define the semantics of an incomplete argumentation framework
through the completions. However, there are other ways for defining semantics of an
incomplete argumentation framework as well. Cayrol et al. [5], for instance, restate the
basic requirements of conflict-freeness and acceptability in the context of their “partial
argumentation frameworks” (PAFs), consider related complexity issues, and establish
links between semantics of PAFs and semantics of the completions.

3. Complexity Results

The number of completions for a given incomplete argumentation framework is expo-
nential in the number of its uncertain elements. Therefore, possible and necessary prob-
lem generalizations are potentially harder than the respective baseline problem. In this
section, we provide a full analysis of whether and how the computational complexity of
the PCA, NCA, PSA, and NSA problem variants differs from that of CA and SA for
the six semantics CF, AD, ST, CP, GR, and PR. For information about the relevant com-
plexity classes of the polynomial hierarchy—in particular, P, NP, coNP, Πp

2 = coNPNP,
Σp

2 = NPNP, and Σp
3 = NPΣp

2 —as well as the concepts of hardness and completeness, we
refer the reader to, e.g., Papadimitriou [14], Stockmeyer [16], and Rothe [15].

3.1. Upper Bounds

We start with some simple P membership results. Since the answer to CF-SA and AD-
SA is trivially “no” for all completions of an incomplete argumentation framework due
to Observation 1, so is the answer to their possible and necessary generalizations s-PSA
and s-NSA for s ∈ {CF,AD}, which are therefore in P, too. Further, both the possible
and necessary generalizations of CF-CA are in P, as stated in Proposition 6.

Proposition 6. CF-PCA and CF-NCA are in P.

The proof of Proposition 6 is omitted due to space limitations. For all remaining
problems, from their quantifier representation we can derive upper bounds potentially
higher than P. Matching lower bounds in Section 3.2 will prove these bounds to be tight.
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Table 1. Overview of quantified SAT problems used for hardness reductions

instance question complexity

3-SAT (ϕ,X) ∃τX : ϕ[τX ] = true NP-complete
Σ2SAT (ϕ,X ,Y ) ∃τX : ∀τY : ϕ[τX ,τY ] = false Σp

2 -complete
Σ3SAT (ϕ,X ,Y,Z) ∃τX : ∀τY : ∃τZ : ϕ[τX ,τY ,τZ ] = true Σp

3 -complete

3-UNSAT (ϕ,X) ∀τX : ϕ[τX ] = false coNP-complete
Π2SAT (ϕ,X ,Y ) ∀τX : ∃τY : ϕ[τX ,τY ] = true Πp

2 -complete

Proposition 7. 1. For s ∈ {AD, ST,CP,GR, PR} and for s′ ∈ {CP,GR}, s-PCA and
s′-PSA are in NP.

2. For s ∈ {ST,CP,GR}, s-NSA and GR-NCA are in coNP.
3. For s ∈ {AD, ST,CP, PR}, s-NCA is in Πp

2 .
4. ST-PSA is in Σp

2 .
5. PR-NSA is in Πp

2 and PR-PSA is in Σp
3 .

Proof. Due to space limitations, we only prove the last item of this proposition. In
the following, whenever we speak of “existential quantifiers” or “universal quantifiers,”
we mean polynomially length-bounded existential or universal quantifiers. A quantifier
representation of skeptical acceptance for the preferred semantics is “∀E ⊆ (A \{a}) :
∃E ′ ⊃ E : (E is not AD in AF) or (E ′ is AD in AF)”, where AF = 〈A ,R〉 and a ∈ A .
For PR-NSA, this is preceded by a universal quantifier over completions which collapses
with the leading universal quantifier and provides Πp

2 membership. For PR-PSA, it is pre-
ceded by an existential quantifier over completions and provides Σp

3 membership. �

3.2. Lower Bounds

Any hardness of the problems CA and SA is directly inherited by their possible and
necessary generalizations. For several of these generalizations, the upper bound from
Section 3.1 coincides with the lower bound inherited from CA and SA (cf. Table 2,
columns 2 and 5), which is stated in Corollary 8.

Corollary 8. 1. For s ∈ {AD, ST,CP, PR}, s-PCA is NP-hard.
2. ST-NSA is coNP-hard.
3. PR-NSA is Πp

2 -hard.

For our proofs of the remaining hardness results, we reduce from different versions
of the satisfiability problem for quantified boolean formulas (QSAT), which are known
to be hard for different classes in the polynomial hierarchy. Table 1 gives a short defini-
tion of all used problems along with their complexity, where X , Y , and Z are disjoint sets
of propositional variables, ϕ denotes a formula in 3-CNF (conjunctive normal form with
at most three literals per clause) over the respective variables, τS is a truth assignment on
a set of literals S with τS : S →{true, false}, and ϕ[τS] is the truth value that ϕ evaluates
to under τS.

Definition 9 describes a generic translation of 3-SAT, 3-UNSAT, Σ2SAT, and
Π2SAT instances to incomplete argumentation frameworks that will be used in most of
the remaining proofs. It allows to construct either purely attack-incomplete or purely
argument-incomplete argumentation frameworks, so all hardness results obtained hold
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even in these special cases. The translation is loosely based on a similar construction
originally used by Dimopoulos and Torres [10], which has since been frequently adopted
and modified.

Definition 9. Given a QSAT instance (ϕ,X ,Y ) (where Y is considered empty if not part
of an instance) with ϕ =

∧
i ci and ci =

∨
j α j for each clause ci, where the α j are the liter-

als in clause ci, create either an attack-incomplete argumentation framework 〈A ,R,R?〉
(left) or an argument-incomplete argumentation framework 〈A ,A ?,R〉 (right):

A =

⎧⎪⎪⎨
⎪⎪⎩

xi, x̄i, for xi ∈ X
yi, ȳi, for yi ∈ Y
c̄i, for ci in ϕ
ϕ, ϕ̄,g

⎫⎪⎪⎬
⎪⎪⎭
,

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x̄i,xi), for xi ∈ X
(yi, ȳi),(ȳi,yi), for yi ∈ Y
(xk, c̄i), if xk in ci
(x̄k, c̄i), if ¬xk in ci
(yk, c̄i), if yk in ci
(ȳk, c̄i), if ¬yk in ci
(c̄i,ϕ), for ci ∈ ϕ
(ϕ, ϕ̄),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

R? =
{
(g, x̄i), for xi ∈ X

}
.

A =

⎧⎪⎪⎨
⎪⎪⎩

x̄i, for xi ∈ X
yi, ȳi, for yi ∈ Y
c̄i, for ci in ϕ
ϕ, ϕ̄,g

⎫⎪⎪⎬
⎪⎪⎭
,

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xi, x̄i), for xi ∈ X
(yi, ȳi),(ȳi,yi), for yi ∈ Y
(xk, c̄i), if xk in ci
(x̄k, c̄i), if ¬xk in ci
(yk, c̄i), if yk in ci
(ȳk, c̄i), if ¬yk in ci
(c̄i,ϕ), for ci ∈ ϕ
(ϕ, ϕ̄),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

A ? =
{

xi, for xi ∈ X
}
.

All arguments xi, yi and x̄i, ȳi are called literal arguments and all arguments c̄i clause
arguments. All arguments in pairs ā, a are called counterparts of each other. Argument
g is without effect in the argument-incomplete version and only included there for uni-
formity.

For an incomplete argumentation framework AF created according to Definition 9,
we associate a given truth assignment τX on X with a completion AFτX = 〈A τX ,RτX 〉
of AF . For an attack-incomplete argumentation framework 〈A ,R,R?〉, that completion
has A τX = A and (g, x̄i) ∈ RτX ⇐⇒ τX (xi) = true. For an argument-incomplete argu-
mentation framework 〈A ,A ?,R〉, that completion has xi ∈ A τX ⇐⇒ τX (xi) = true and
RτX =R|A τX . Further, we identify an assignment τS on a set S = {s1, . . . ,s|S|} ⊆ (X ∪Y )
of variables with a set A τX [τS] of arguments in the completion, namely, A τX [τS] =
{si | τS(si) = true}∪{s̄i | τS(si) = false}.

In Lemma 10, we prove that both constructions behave similarly and can, in effect,
be used interchangeably.

Lemma 10. Let (ϕ,X ,Y ) be a QSAT instance, let 〈A ,R,R?〉 or 〈A ,A ?,R〉 be an
incomplete argumentation framework created for it according to Definition 9, and let
τX be an assignment on X. In the completion AFτX , A τX [τX ]∪ {g} is a subset of the
grounded extension and therefore contained in all complete extensions.

Proof. g is always unattacked and therefore clearly in the grounded extension. Con-
sider the attack-incomplete argumentation framework AF = 〈A ,R,R?〉 and the com-
pletion AFτX of AF according to τX . In AFτX , g attacks each argument x̄i for which
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τX (xi) = true, thus defending its counterpart xi, so these xi are included in the grounded
extension. All x̄ j for which τX (x j) = false remain unattacked and are themselves in-
cluded in the grounded extension, while they attack their counterparts x j, which thus
are not included. Consider now the argument-incomplete argumentation framework
AF = 〈A ,A ?,R〉 and its completion AFτX . Each argument xi is always unattacked and
therefore in the grounded extension if and only if it is included in the completion, which
is the case for τX (xi) = true. Each x̄ j is only attacked by its counterpart x j and therefore
in the grounded extension if and only if that x j is excluded from the completion, which
is the case for τX (xi) = false. �

We now show a crucial correspondence between assignments in a QSAT instance
and sets of arguments in the respective incomplete argumentation framework.

Lemma 11. Given a QSAT instance (ϕ,X ,Y ) and full assignments τX and τY (τY only
if applicable). Let AF be an incomplete AF created for (ϕ,X ,Y ) following Definition 9,
let AFτX be its completion corresponding to τX and let A τX [τX ,τY ] be the set of literal
arguments corresponding to the total assignment.

• If ϕ[τX ,τY ] = true, then A τX [τX ,τY ]∪{g,ϕ} is admissible, complete, preferred,
and stable in AFτX , and for Y = /0 also grounded.

• If ϕ[τX ,τY ] = false, then A τX [τX ,τY ]∪{g, ϕ̄}∪ {c̄i | �d ∈ A τX [τX ,τY ] : (d, c̄i) ∈
RτX } is admissible, complete, preferred, and stable in AFτX , and for Y = /0 also
grounded.

Proof. Assume that ϕ[τX ,τY ] = true. We know that A τX [τX ]∪{g} is a subset of the
grounded extension of AFτX . We show that E =A τX [τX ,τY ]∪{g,ϕ} is stable in AFτX . It
is easy to see from Definition 9 that E is conflict-free, since there are no attacks between
literal arguments for distinct literals, ϕ , or g. Further, E attacks each argument in A τX \
E . Argument ϕ̄ is attacked by ϕ ∈ E . Each literal argument from X that does not occur
in E is either excluded from the completion, attacked by g, or attacked by its counterpart
in E . Each literal argument from Y that is not in E is attacked by its counterpart in E .
For each clause argument c̄i, we know by assumption that the corresponding clause ci
in ϕ is satisfied by the total assignment, since ϕ[τX ,τY ] = true. Since ci is satisfied, at
least one literal in ci must be satisfied. By construction of E we know that at least one
literal argument corresponding to a literal in ci is in E , and by construction of AF , this
argument attacks the clause argument c̄i. In total, this means that all clause arguments
are attacked by E , and we proved that E is stable in AFτX . Since E is stable, it is also
preferred, complete, and admissible. For Y = /0, the set A τX [τX ]∪{g}, which is a subset
of the grounded extension by Lemma 10, already attacks all clause arguments and thus
defends ϕ , so A τX [τX ]∪{g,ϕ} is the grounded extension of AFτX .

Now assume that ϕ[τX ,τY ] = false. Let E ′ = A τX [τX ,τY ] ∪ {g, ϕ̄} ∪ {c̄i | �d ∈
A τX [τX ,τY ] : (d, c̄i)∈RτX }. First, let us show that the subset C = {c̄i |�d ∈A τX [τX ,τY ] :
(d, c̄i) ∈ RτX } of E ′ is non-empty. Since ϕ[τX ,τY ] = false, there is at least one clause c′i
in ϕ that is not satisfied by the total assignment, so none of the literals in c′i is satisfied.
These literals correspond to literal arguments in AF , which are the only arguments in AF
that attack the clause argument c̄′i. By construction of E ′, we know that none of these ar-
guments are in E ′, so E ′ does not attack c̄′i and thus c̄′i ∈C. We now show that E ′ is stable
in AFτX . Again, E ′ is clearly conflict-free. All literal arguments from X that do not occur
in E ′ are again either excluded from the completion, attacked by g, or attacked by their
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counterpart in E ′. Each literal argument from Y that is not in E ′ is attacked by its coun-
terpart in E ′. Each clause argument that is not in C is attacked by some d ∈ A τX [τX ,τY ]
due to the definition of C. Finally, argument ϕ is attacked by all arguments in C ⊆ E ′, of
which there is at least one since C �= /0. Since E ′ is stable, it is also preferred, complete,
and admissible. For Y = /0, the set A τX [τX ]∪ {g}, which is a subset of the grounded
extension due to Lemma 10, already attacks all clause arguments in A τX \C and thus
defends all arguments in C, which in turn defend ϕ̄ , so E ′ is the grounded extension of
AFτX . �

Theorem 12. GR-PCA is NP-hard.

Proof. We reduce from 3-SAT. Let (ϕ,X) be a 3-SAT instance. If (ϕ,X) ∈ 3-SAT,
we have ∃τX : ϕ[τX ] = true, so by Lemma 11 there exists a completion of the corre-
sponding argumentation framework AF where ϕ is in the grounded extension, and we
have (AF,ϕ) ∈ GR-PCA. If (ϕ,X) �∈ 3-SAT, we have ∀τX : ϕ[τX ] = false, so ϕ̄ is in
the grounded extension of all completions of the corresponding argumentation frame-
work AF , so ϕ cannot be in the grounded extension of any completion, and we have
(AF,ϕ) �∈ GR-PCA. �

Together with Observations 2 and 3, the following corollary follows immediately.

Corollary 13. GR-PSA and CP-PSA are NP-hard.

Theorem 14. GR-NCA is coNP-hard.

Proof. We reduce from 3-UNSAT. Let (ϕ,X) be a 3-UNSAT instance. If (ϕ,X) ∈
3-UNSAT, we have ∀τX : ϕ[τX ] = false, so by Lemma 11, ϕ̄ is in the grounded exten-
sion of all completions of the corresponding argumentation framework AF and we have
(AF, ϕ̄) ∈ GR-NCA. If (ϕ,X) �∈ 3-UNSAT, we have ∃τX : ϕ[τX ] = true, so there ex-
ists a completion of the corresponding argumentation framework AF where ϕ is in the
grounded extension, so ϕ̄ cannot be in the grounded extensions of all completions, and
we have (AF, ϕ̄) �∈ GR-NCA. �

Again, Observations 2 and 3 immediately give the following corollary.

Corollary 15. GR-NSA and CP-NSA are coNP-hard.

Theorem 16. For s ∈ {AD,CP, ST, PR}, s-NCA is Πp
2 -hard.

Proof. We reduce from Π2SAT. Let (ϕ,X ,Y ) be a Π2SAT instance. If (ϕ,X ,Y ) ∈
Π2SAT, we have ∀τX : ∃τY : ϕ[τX ,τY ] = true, so by Lemma 11, for all completions
of the corresponding argumentation framework AF , there is a τY such that the set
A τX [τX ,τY ]∪{g,ϕ} is admissible, complete, preferred, and stable, so (AF,ϕ) ∈ s-NCA
for s ∈ {AD,CP, ST, PR}. If (ϕ,X ,Y ) �∈ Π2SAT, we have ∃τX : ∀τY : ϕ[τX ,τY ] = false,
so there is a completion AFτX of the corresponding argumentation framework AF where
A τX [τX ,τY ]∪{g, ϕ̄}∪{ci |�d ∈ A τX [τX ,τY ] : (d,ci) ∈ RτX } is stable for any choice of
τY . This means that ϕ cannot be a member of any admissible set in that completion—
and therefore neither in a complete, stable, or preferred set—so (AF,ϕ) �∈ s-NCA for
s ∈ {AD,CP, ST, PR}. �
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Figure 2. PR-PSA instance created from clauses c1 = x1 ∨¬y1 ∨¬z1 and c2 = y1 ∨¬y2 ∨ z1 following a con-
struction of Dunne and Bench-Capon [12]. Add either the framed part at the top to create an argument-incom-
plete argumentation framework or the one at the bottom for an attack-incomplete argumentation framework. A
slight modification that uses c′2 = y1 ∨¬y2 instead of c2 can be obtained by excluding the dotted attack (z1, c̄2).

Theorem 17. ST-PSA is Σp
2 -hard.

Proof. We reduce from Σ2SAT. Let (ϕ,X ,Y ) be a Σ2SAT instance. If (ϕ,X ,Y ) ∈
Σ2SAT, we have ∃τX : ∀τY : ϕ[τX ,τY ] = false, so by Lemma 11, there is a completion
AFτX of the corresponding argumentation framework AF where A τX [τX ,τY ]∪{g, ϕ̄}∪
{ci |�d ∈ A τX [τX ,τY ] : (d,ci) ∈ RτX } is stable for any choice of τY . There clearly can
be no stable extension other than these, so (AF, ϕ̄) ∈ ST-PSA. If (ϕ,X ,Y ) �∈ Σ2SAT, we
have ∀τX : ∃τY : ϕ[τX ,τY ] = true, so for all completions of the corresponding argumen-
tation framework AF , there is some τY such that the set A τX [τX ,τY ]∪{g,ϕ} is stable.
Therefore, (AF, ϕ̄) �∈ ST-PSA. �

Theorem 18. PR-PSA is Σp
3 -hard.

Proof. Due to space constraints, we only sketch the proof of Theorem 18. To prove
Σp

3 -hardness, we can extend a reduction that Dunne and Bench-Capon [12, Def. 13] used
to prove Πp

2 -hardness of PR-SA (see also the related work of Atkinson et al. [1]). Given
an instance (ϕ,X ,Y,Z) of Σ3SAT, create an incomplete argumentation framework AF
according to their construction using Y for their x-arguments, Z for their y-arguments,
and clause arguments and ϕ for their gate arguments. In addition, create arguments from
literals X along with argument g the same way as in our Definition 9.

If (ϕ,X ,Y,Z) ∈ Σ3SAT, there is a completion of AF in which, by their result,
argument ϕ is skeptically preferred, so (AF,ϕ) ∈ PR-PSA. If (ϕ,X ,Y,Z) �∈ Σ3SAT,
for all completions of AF , there is a preferred extension that does not include ϕ , so
(AF,ϕ) �∈ PR-PSA. �

Example 19. Consider a Σ3SAT instance (ϕ,{x1},{y1,y2},{z1}), where ϕ = c1 ∧ c2
with c1 = x1 ∨¬y1 ∨¬z1 and c2 = y1 ∨¬y2 ∨ z1. Figure 2 displays a graph representa-
tion of the incomplete argumentation framework created for this instance of Σ3SAT: For
τX (x1) = true, any assignment τY on {y1,y2}, and τZ(z1) = true, we have ϕ[τX ,τY ,τZ ] =
true. Accordingly, in the completion AFτX all preferred extensions are of the form
{g,x1,z1,ϕ}∪A [τY ] for some τY , so ϕ is skeptically preferred.
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Table 2. Overview of existing and new complexity results for credulous and skeptical acceptance problems,
where existing results are ascribed to the respective source (references are numbers in brackets). Results marked
with an asterisk (∗) are straight-forward and and results due to this paper are marked by their theorem numbers.

s-CA s-PCA s-NCA s-SA s-PSA s-NSA

CF ∈ P ∗ ∈ P 6 ∈ P 6 trivial ∗ trivial ∗ trivial ∗

AD NP-c. [10] NP-c. 8 Πp
2 -c. 16 trivial ∗ trivial ∗ trivial ∗

ST NP-c. [10] NP-c. 8 Πp
2 -c. 16 coNP-c. [10] Σp

2 -c. 17 coNP-c. 8
CP NP-c. [7] NP-c. 8 Πp

2 -c. 16 ∈ P [7] NP-c. 13 coNP-c. 15
GR ∈ P ∗ NP-c. 12 coNP-c. 14 ∈ P ∗ NP-c. 13 coNP-c. 15
PR NP-c. [10] NP-c. 8 Πp

2 -c. 16 Πp
2 -c. [12] Σp

3 -c. 18 Πp
2 -c. 8

When changing c2 to c′2 = y1 ∨¬y2 and ϕ ′ = c1 ∧ c′2, we obtain a “no” instance.
For τY with τY (y1) = false and τY (y2) = true, along with any assignments τX and τZ ,
we have ϕ ′[τX ,τY ,τZ ] = false. In the corresponding argumentation framework, in both
completions either {g,x1, ȳ1,y2, c̄′2} or {g, x̄1, ȳ1,y2, c̄′2} is a preferred extension that does
not include ϕ , so ϕ is not skeptically preferred.

4. Conclusions and Relations to Other Models

Table 2 summarizes all complexity results of this paper and compares them to the existing
results for CA and SA.

Compared to the possible and necessary variants of the verification problem for in-
complete argumentation frameworks [3], which are not harder to solve than the respec-
tive baseline problem for many semantics, in this paper we observe a jump in complexity
of necessary credulous acceptance and possible skeptical acceptance in almost all cases.
This indicates that the presence of uncertainty, as described by attack incompleteness or
argument incompleteness or both, is very likely to make acceptance problems harder.

Possible-credulous acceptance problems in incomplete argumentation frameworks
are related to extension enforcement problems [2,8], where the question is, given an ar-
gumentation framework and a subset of its arguments, how the attacks and/or the argu-
ments of the argumentation framework can be modified most efficiently such that the
given set becomes part of an extension. Instances for acceptance problems in incom-
plete argumentation frameworks and for enforcement problems coincide if the incom-
plete argumentation framework has only uncertain attacks and no uncertain arguments,
and if the enforcement instance allows only changes to the attack relation and its given
subset is a singleton. However, enforcement problems aim at finding a minimal num-
ber of changes to the argumentation framework, which is not an aim in incomplete ar-
gumentation frameworks. On the other hand, the question of whether acceptance of the
target argument can at all be achieved is trivially true in most variants of enforcement,
while this is the key question for possible-credulous acceptance problems in incomplete
argumentation frameworks.

The model of incomplete argumentation frameworks is further closely related to the
recently proposed control argumentation frameworks (CAF) [9], which use a similar,
yet much more specific formalism of uncertain elements in argumentation frameworks.
Though technically similar, neither model can be fully expressed by the other: CAFs
have no feature to represent uncertain attacks in “possible” problem variants, while in-

D. Baumeister et al. / Credulous and Skeptical Acceptance 191



complete argumentation frameworks cannot express uncertain attacks where the attack
itself is known, but its direction is not. However, there are various special cases where
both models coincide. For example, “possible” problem variants in purely argument-
incomplete argumentation frameworks can be represented by CAFs using their control-
part, while “necessary” problem variants in incomplete argumentation frameworks can
be represented by CAFs using their uncertain-part. The results of this paper may there-
fore be useful for the complexity analysis of similar problems in CAFs.
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