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Abstract. We present a family of stochastic local search algorithms for finding a
single stable extension in an abstract argumentation framework. These incomplete
algorithms work on random labellings for arguments and iteratively select a random
mislabeled argument and flip its label. We present a general version of this approach
and an optimisation that allows for greedy selections of arguments. We conduct
an empirical evaluation with benchmark graphs from the previous two ICCMA
competitions and further random instances. Our results show that our approach is
competitive in general and significantly outperforms previous direct approaches
and reduction-based approaches for the Barabási-Albert graph model.
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1. Introduction

Abstract argumentation frameworks [7] provide a simple formal representation for dis-
cussing general aspects pertaining to computational models of argumentation. These
frameworks abstract from the inner structure of arguments and focus solely on the inter-
action between arguments by means of a conflict relation. Formally, an abstract argumen-
tation framework is a directed graph where vertices are identified with arguments and
a directed edge between two arguments models an attack of the first argument onto the
second argument. Despite the fact that abstract argumentation frameworks are a simple
formalism for a computational model of argumentation, several semantical issues can al-
ready be discussed in this framework, giving rise to a plethora of different semantics [1].
The core notion of the semantics of an abstract argumentation framework is the exten-
sion, i. e., a set of arguments that are justifiable as a whole and provide a specific stand-
point for reasoning. Determining these extensions can be computationally demanding
due to the fact that already the underlying decision problems lie up to the second level of
the polynomial hierarchy [8].

Algorithmic approaches to abstract argumentation [4] have recently gained attention
in the community, mainly due to the International Competition of Computational Models
of Argumentation (ICCMA), where the third instance is currently being organised.1 We
follow in this line of work and contribute to the field by developing novel algorithms for
the problem of determining some stable extension and evaluating them with a compara-

1http://argumentationcompetition.org/2019

U

Computational Models of Argument
S. Modgil et al. (Eds.)
© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-906-5-169

169



tive empirical evaluation with state-of-the-art solvers from the recent two competitions.
Our algorithms follow the paradigm of stochastic local search, i. e., incomplete optimi-
sation algorithms that aim at reaching an optimal value of a target function by small ran-
dom changes of the parameters, see e. g. [2, Chapter 6] for a deeper discussion in the
context of solving the satisfiability problem (SAT). The core idea of our algorithms is as
follows. Considering the labelling approach to the semantics of abstract argumentation
frameworks, we start from a labelling that randomly assigns the acceptability status in
and out to all arguments of the input argumentation framework. As long as this labelling
is not stable—i. e. as long as the arguments labelled in do not form a stable extension—
we select one mislabelled argument and flip its acceptability status. Albeit being a sim-
ple idea it can outperform traditional algorithms, in particular on random instances with
little structure.

In summary, the contributions of this paper are as follows.

1. We develop a family of stochastic local search algorithms for computing a single
stable extension of an abstract argumentation framework (Section 4)

2. We compare the empirical performance of our approach with state-of-the-art
solvers from the previous two competitions (Section 5)

Background on abstract argumentation is given in Section 2, related works are discussed
in Section 3, and we conclude with a summary in Section 6.

2. Abstract Argumentation

An abstract argumentation framework AF is a tuple AF = (Arg,→) where Arg is a set
of arguments and → is a relation →⊆ Arg×Arg. For two arguments A ,B ∈ Arg the
relation A → B means that argument A attacks argument B. For A ∈ Arg define
A − = {B | B → A }. Semantics are given to abstract argumentation frameworks by
means of extensions [7] or labellings [3]. In this work, we use the latter. A labelling L is
a function L : Arg→{in,out,undec} that assigns to each argument A ∈ Arg either the
value in, meaning that the argument is accepted, out, meaning that the argument is not
accepted, or undec, meaning that the status of the argument is undecided. Let in(L) =
{A | L(A ) = in} and out(L) resp. undec(L) be defined analogously. A labelling L is
called conflict-free if for no A ,B ∈ in(L), A →B.

Arguably, the most important property of a semantics is its admissibility. A labelling
L is called admissible if and only if for all arguments A ∈ Arg

1. if L(A ) = out then there is B ∈ Arg with L(B) = in and B→A , and
2. if L(A ) = in then L(B) = out for all B ∈ Arg with B→A ,

and it is called complete if, additionally, it satisfies

3. if L(A ) = undec then there is no B ∈Arg with B→A and L(B) = in and there
is a B′ ∈ Arg with B′ →A and L(B′) �= out.

The intuition behind admissibility is that an argument can only be accepted if there are
no attackers that are accepted and if an argument is not accepted then there has to be
some reasonable grounds. The idea behind the completeness property is that the status
of an argument is only undec if it cannot be classified as in or out. Different types
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of classical semantics can be phrased by imposing further constraints. In particular, a
complete labelling L

• is grounded if and only if in(L) is minimal,
• is preferred if and only if in(L) is maximal, and
• is stable if and only if undec(L) = /0.

All statements on minimality/maximality are meant to be with respect to set inclusion.
If L is a complete/grounded/preferred/stable labelling then in(L) is also called the cor-
responding complete/grounded/preferred/stable extension.

In this paper we focus on the stable semantics and investigate algorithms that are
able to find a single stable labelling of a given abstract argumentation framework AF.
Recall that the problem of deciding whether a stable labelling exists is NP-complete [8].

3. Related Work

According to [6], algorithms for solving reasoning problems in abstract argumentation
can generally be categorised into two classes: reduction-based approaches and direct
approaches.

Reduction-based approaches such as ASPARTIX-D [9,11] and ArgSemSAT [5]
translate the given problem for abstract argumentation—such as determining a single sta-
ble extension—into another formalism and use dedicated (and mature) systems for that
formalism to solver the original problem. For example, ASPARTIX encodes the prob-
lem of finding a stable extension in abstract argumentation into the question of finding
an answer set of an answer set program [12]. Due to the direct relationship of answer
sets and stable models the answer set program only needs to model the semantics of the
abstract argumentation framework in a faithful manner and represent the actual frame-
work. ASPARTIX-D then makes use of the Potassco ASP solvers2 to solve the reduced
problem and translate their output back to the original question. Similarly, ArgSemSAT
decodes the problem as a SAT instance and uses the Glucose3 SAT solver to solve the
latter. Internally, solvers such as the Potassco ASP solvers and SAT solvers make use of
sophisticated search strategies such as conflict-driven nogood learning or conflict-driven
clause learning, see [12,2] for details.

Direct approaches to solve reasoning problems in abstract argumentation are in-
spired by similar search strategies but directly realise these algorithms for abstract argu-
mentation. For example, solvers such as ArgTools [15] and heureka [13] are based on the
DPLL (Davis-Putnam-Logemann-Loveland) backtracking algorithm from SAT solving
[2, Chapter 3]. Basically, they exhaustively explore the search space of all possible sets
of arguments to determine, e. g., a stable extension but include various optimisations and
specific search strategies to prune the search space as much as possible to keep runtime
low. Another direct solver, EqArgSolver [16], uses a different approach though, and is
inspired by an iteration scheme originally designed to solve problems for probabilistic
argumentation [10]. For a more detailed discussion of the different approaches to solving
problems in abstract argumentation see [4].

The above approaches to solve reasoning problems in abstract argumentation are
complete, i. e., when they terminate they always produce the correct answer. In this pa-

2http://potassco.sourceforge.net
3http://www.labri.fr/perso/lsimon/glucose/
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per, we will use stochastic local search, a non-deterministic and not necessarily com-
plete search procedure. To the best of our knowledge, only the recent work [14] applied
stochastic local search to abstract argumentation before. However, Niu et al. address pre-
ferred semantics and they approach differs conceptually from ours. They operate on a
CNF representation of the extension finding problem and applied the stochastic local
search algorithm Swcca on that representation instead of the actual graph representation.
Therefore, the approach of [14] is reduction-based, while we pursue a direct approach.

The International Competition of Computational Models of Argumentation (IC-
CMA) is a bi-annual event that assesses the performance of solvers for various tasks
related to abstract argumentation in a competitive setting. In order to compare our ap-
proach to state-of-the-art solvers, we used the best three approaches from the last compe-
tition4 (ICCMA’17) from the stable semantics track as reference solvers. These solvers
were pyglaf, goDIAMOND, and argmat-sat. In addition, we also included ASPARTIX-
D which won the corresponding track in ICCMA’15 but did not participate in IC-
CMA’17 due to a conflict of interest. As these four solvers are all reduction-based ap-
proaches (pyglaf and argmat-sat are based on SAT-reductions while goDIAMOND and
ASPARTIX-D are based on ASP-reductions) we also included all three direct solvers par-
ticipating in the stable semantics track from ICCMA’17: ArgTools, heureka, and EqArg-
Solver. These seven solvers therefore constitute the state-of-the-art in determining a sin-
gle stable extension, taking different implementation paradigms into account.

4. Stochastic Local Search Algorithms

The term stochastic local search denotes search algorithms that aim at iteratively improv-
ing a target function by small random changes in its arguments. A well-known applica-
tion for stochastic local search is SAT, in particular due to the GSAT [17] and WalkSAT
algorithms [18], see also [2, Chapter 6]. The central idea of the GSAT/WalkSAT al-
gorithm is as follows. Initially, some random interpretation is selected and, as long as
this interpretation does not satisfy the input formula, some variable of some unsatisfied
clause is selected at random and its truth value is flipped in the interpretation. Eventually,
i. e., with probability strictly greater than zero, if the formula is satisfiable then some
satisfying interpretation is found in this way. However, note that GSAT/WalkSAT, and
stochastic local search in general, is an incomplete algorithm. That means in the case of
an unsatisfiable formula the GSAT/WalkSAT algorithm will not terminate. In order to
obtain practical systems, either a timeout is used and unsatisfiability is proclaimed with
some confidence value or such an algorithm is combined with a more efficient algorithm
that shows unsatisfiability.

In this section, we will present stochastic local search algorithms for determining a
stable extension of an abstract argumentation framework. More precisely, we address the
problem SE-ST from the ICCMA competition:

SE-ST Input: An argumentation framework AF= (Arg,→)
Output: a stable extension E of AF or NO if there are no stable extensions

Our algorithms will be incomplete as well, meaning that they will never output NO in
case of non-existence of extensions but (conceptually) loop forever. We will, however,

4http://argumentationcompetition.org/2017
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constrain the running time of our implementations by providing the algorithm with a
maximal number of tries before terminating with a notification of failure.

We proceed in this section as follows. In Section 4.1 we will first present a base
algorithm that directly adapts the GSAT/WalkSAT algorithm for the above problem. In
Section 4.2 we will present an optimisation by adding deterministic greedy moves to the
random moves of the algorithm.

4.1. The base algorithm WalkAAF

Our base algorithm WalkAAF is a direct implementation of the GSAT/WalkSAT idea
outlined above. Instead of working with a propositional interpretation, WalkAAF works
with a labelling and each iteration a label of some argument is modified. As our aim is
to obtain a stable labelling, we wish to avoid mislabeled arguments defined as follows.

Definition 1. Let L be a labelling for AF = (Arg,→). An argument A ∈ Arg is misla-
beled in L if

• L(A ) = undec, or
• L(A ) = out and there is no B→A with L(B) = in, or
• L(A ) = in and

∗ there is B→A with L(B) �= out or
∗ there is A →B with L(B) �= out

The following result follows straightforwardly from the definition of a stable la-
belling and is given without proof.

Proposition 2. A labelling L is stable iff there is no mislabeled argument in L.

Algorithm 1 depicts the WalkAAFN,M base algorithm which implements the
GSAT/WalkSAT idea without any optimisations but with restarts [2, Chapter 6]. The
algorithm works with two externally given parameters N and M with N,M ∈ N. The
parameter N gives the maximal number of runs (=restarts) of the algorithms before the
algorithm terminates with a notification of failure (FAIL). The parameter M gives the
number of iterations in each run. Each run starts with determining some random labelling
L that labels all arguments with either in or out (line 2). Note that as we wish to obtain
a stable labelling, we completely neglect the label undec. If the labelling L is already
stable then the algorithm terminates (line 4/5) . Otherwise, due to Proposition 2 there
is at least one mislabeled argument in L. The algorithm selects one of those arguments
at random (line 7) and “flips” its acceptance status (lines 8–11), i. e., if it is currently
labeled in it is changed to out and vice versa. The algorithm repeats this process for
M steps. If we did not find a stable labelling, we do a “restart”, i. e., start from a new
random labelling. After N unsuccessful restarts, the algorithm terminates with FAIL (line
12).

The algorithm WalkAAFN,M is sound in the following sense.

Proposition 3. If L is a labelling returned from a call to WalkAAFN,M on input AF then
L is a stable labelling of AF.

Proof. The only case WalkAAFN,M returns a labelling L is in line 5 where stability of L
is ensured in line 4.
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Algorithm 1 WalkAAFN,M algorithm (N,M ∈ N)

Input: AF= (Arg,→) AAF
Output: L a stable labelling (or FAIL if the search failed)

1: for i = 1, . . . ,N do

2: L← randomize in and out

3: for j = 1, . . .M do

4: if L is stable then

5: return L
6: else

7: Pick random mislabeled argument A
8: if L(A ) = in then

9: L(A )← out

10: else

11: L(A )← in

12: return FAIL

Proposition 4. If AF has no stable labellings then any call WalkAAFN,M on input AF
with finite N,M terminates with FAIL.

Proof. As AF has no stable labellings line 5 will never be reached in WalkAAFN,M . As
both N and M are finite, eventually line 12 is executed and FAIL is returned.

Unfortunately, WalkAAFN,M is not complete as it may return FAIL even if stable
labellings exist.

Example 5. Consider the argumentation framework in Figure 1. Let L1 be the labelling
defined as

L1(A1) = in L1(A2) = out L1(A3) = in L1(A4) = out L1(A5) = in

Assume L1 is randomly selected in line 2 of WalkAAFN,M . L1 is not a stable labelling and
argument A3 and A5 are mislabeled according to Definition 1. Assume A3 is selected in
line 7 to be relabelled. Then we obtain a new labelling L2 defined via

L2(A1) = in L1(A2) = out L2(A3) = out L2(A4) = out L2(A5) = in

Still, L2 is not stable and argument A4 is mislabeled. Now A4 is now selected in line 7
to be relabelled. Then we obtain a new labelling L3 defined via

L3(A1) = in L3(A2) = out L3(A3) = out L3(A4) = in L3(A5) = in

Still, L3 is not stable and arguments A4 and A5 are mislabeled. Note that this process
can be repeated indefinitely (or until the maximum number M of iterations is reached)
without ever obtaining a stable labelling. However, note that the framework does indeed
possess a stable labelling, namely Lst defined via

Lst(A1) = out Lst(A2) = in Lst(A3) = out Lst(A4) = in Lst(A5) = out
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Figure 1. The argumentation framework from Example 5.

We conclude the presentation of the base algorithm WalkAAFN,M with a theoretical
analysis of its runtime and space complexity.

Proposition 6. For input AF= (Arg,→) and N,M ∈N, WalkAAFN,M runs in worst-case
time of O(NM|Arg|2) and needs space O(|Arg|).
Proof. As lines 2–11 are repeated N times we get the factor N and as lines 4–11 are
repeated M times in each outer iteration we get the factor M. Note that line 2 needs linear
time in Arg (as each argument gets label), assuming that a random choice can be made in
constant time. Within lines 4–11 all operations need constant time except line 4 and line
7. Line 4 can be implemented by iterating through all arguments and checking whether
they are mislabeled according to Definition 1. This amounts to at most |Arg|2 and we
also get the list of mislabeled arguments, so line 7 becomes constant.

Space complexity of O(|Arg|) is obvious as only a labelling L is used as data struc-
ture.

The theoretical time complexity of O(NM|Arg|2) can be improved by using intel-
ligent data structures and update operations. For example, if a labelling L′ is obtained
from a labelling L by only flipping the acceptance status of one argument, only argu-
ments directly connected to it may become mislabeled or correctly labelled. Arguments
not connected to it either stay mislabeled or correctly labeled. Therefore, the stability
check in the next iteration needs only to take new local information into account and will
therefore run significantly faster than O(|Arg|2). In our implementation HAYWOOD we
incorporated several such optimisations and we report on its empirical performance in
Section 5.

4.2. Greedy moves

The base algorithm WalkAAFN,M makes no distinction between the mislabeled argu-
ments and selects, at each iteration, a mislabeled argument uniformly at random. But al-
ready the WalkSAT algorithm [18] takes some more information into account and does,
with some certain probability, an occasional greedy step instead of a purely random one.
In WalkSAT this greedy move consists of flipping a variable that amounts to a maximal
number of clauses to be satisfied. For our algorithm WalkAAFN,M we can implement a
similar idea by using the notion of flipping count defined as follows.

Definition 7. Let AF= (Arg,→) be an abstract argumentation framework, A ∈Arg, and
L a labelling. Let LA denote the labelling that is the same as L except that LA (A ) = in

if L(A ) = out and LA (A ) = out if L(A ) = in. Then the flipping count of A wrt. L,
abbreviated by f (L,A ), is the number of mislabeled arguments in L minus the number
of mislabeled arguments in LA .
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In other words, the larger the flipping count of an argument A wrt. L the more
impact flipping A has for L to become a stable labelling.

Example 8. Consider again the argumentation framework in Figure 1 and the labelling
L given via L(A1) = out, L(A2) = out, L(A3) = in, L(A4) = in, and L(A5) = out.

Note that there are four mislabeled arguments in L: A1, A2, A3, A4. If we would flip
the acceptance status of A1, thus obtaining a labelling L′ with L′(A1) = in, L′(A2) =
out, L′(A3) = in, L′(A4) = in, and L′(A5) = out, there would be two mislabeled ar-
guments left: A3 and A4. Therefore, f (L,A3) = 2. Similarly we get

f (L,A2) = 0 f (L,A3) = 1 f (L,A4) = 1 f (L,A5) =−1

Our first extension of WalkAAFN,M now takes another external parameter G ∈ [0,1]
and every time some argument has to be selected in line 7 of Algorithm 1, with probabil-
ity G some argument with maximal flipping count is selected, instead of a random misla-
beled one. We denote this new algorithm by WalkAAFG

N,M and, due to space limitations,
do not provide the full listing.

Note that adding the occasional greedy move to WalkAAFN,M does not change the
soundness and incompleteness of the algorithm, nor the runtime and space complexity
analysis. In fact, keeping track of the flipping counts of all arguments and selecting one
with maximal value can be efficiently realised using Fibonacci heaps, which support up-
date and extraction operations in (amortised) constant and logarithmic runtime, respec-
tively, and need only linear space.

5. Experiments

In the following, we experimentally evaluate the performance of the different variants of
our algorithm. First, we discuss how different parameter settings affect the overall per-
formance. Second, we compare the performance of our optimised algorithm with state-
of-the-art argumentation solvers. As benchmark graphs for all our experiments, we used
(subsets of) graphs used in the First and Second International Competitions on Computa-
tional Models of Argumentation (ICCMA155 and ICCMA176), see also [19], as well as
random graphs based on the Barabási-Albert model generated using AFBenchGen27. As
our algorithms are incomplete they are not able to produce correct results for graphs that
do not have a stable extension. Therefore, graphs where no solver (neither our solver nor
any of the state-of-the-art solvers) was able to produce a stable extension, were omitted
in all our experiments. We provide some details on the benchmark graphs below.

5.1. Implementation details

The algorithms from Section 4 have been implemented in the solver HAYWOOD which is
written in C, licensed under LGPLv3, and available online8. As a preprocessing step, the
solver first computes the grounded labelling of an input argumentation framework and
removes both the arguments labelled in and out in the grounded labelling from the ar-

5http://argumentationcompetition.org/2015/
6http://argumentationcompetition.org/2017/
7https://sourceforge.net/projects/afbenchgen/
8http://taas.tweetyproject.org
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Figure 2. Influence of the parameters of WalkAAF on performance; for all experiments we set N = ∞ but set
a timeout of 10 minutes; all data points are averaged over 3 runs

gumentation framework. By doing so, we avoid risking to label arguments differently by
the stochastic local search later that are already predetermined by the grounded labelling
(recall that all arguments labelling in by the grounded labelling are also labelled in by
every stable labelling). After a stable labelling has been determined on the remaining
framework, all arguments previously removed are re-introduced with their correct label
from the grounded labelling.

In order to implement greedy moves, HAYWOOD uses a Fibonacci heap as priority
queue. Whenever an argument is re-labeled, the flipping counts of this argument and all
neighbouring arguments are recomputed and updated in the Fibonacci heap. If a greedy
move is selected, the top argument of the Fibonacci heap is taken.

5.2. Parameter optimisation

A first series of experiments aims at optimising the two parameters of our algorithm,
the frequency of restarts M and the probability of making a greedy move G. For all
experiments we set (conceptually) N = ∞ but introduced a time out after 10 minutes.
For the parameter optimisation we used the 5th data set of ICCMA’15, which contains
supposedly the hardest instances for stable semantics. Out of the 24 benchmark graphs in
this set 20 graphs possessed at least one stable extension and only these were considered
in the following. For the parameter M we quickly discovered a (linear) dependency of
the number of arguments of a framework and suitable choices for M. In other words, if a
framework has more arguments, M must be proportionally larger. This is quite obvious
as stochastic local search needs, in the best case, linearly more time on linearly larger
frameworks. We therefore decided to define M always as a factor in terms of the number
of arguments of the framework at hand. For example, setting M = 8|Arg| means that we
set M to the value 8 times the number of arguments in the individual framework.

We ran HAYWOOD on the 20 benchmark graphs with parameters M ∈ {1|Arg|, . . . ,
20|Arg|} and G ∈ {0.1, . . . ,0.9} and counted the number of graphs that could be solved
within the time limit of 10 minutes. We ran this experiment three times and took the
average number of solved graphs for each parameter combination.

Figure 2 shows the results of the parameter optimisation. In particular, Figure 2 (a)
shows how many graphs could be solved with three different but fixed values for G and
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ICCMA’15 ICCMA’17 - B Sum
1 2 3 4 5 8 9 1 2 3 4 5

pyglaf 24 24 24 18 20 2 6 33 33 28 49.6 27.3 289
argmat-sat 24 24 24 18 20 2 6 32 32 32 50 27.6 291.6
goDIAMOND 24 24 24 18 20 2 6 33 30 31 50 31 293
ASPARTIX-D 24 24 24 18 20 2 6 33 33 31 50 28.6 293.6
ArgTools 24 24 24 18 20 2 6 33 31 31 44.6 25 282.6
heureka 24 24 24 16 9 2 6 33 33 22 40 25 258
EqArgSolver 24 24 24 4 0 2 6 33 27 16 25 0 185
HAYWOOD-1 24 24 24 18 17.3 1.6 6 32 29 27.6 45.6 22.6 272
HAYWOOD-2 24 24 24 18 17.6 2 6 31.6 29.6 27.6 45.6 24.3 274.6
HAYWOOD-3 24 24 24 18 18 1.6 6 31.6 29 27.3 46 24.6 274.3
HAYWOOD-4 24 24 24 18 18.3 1.3 6 32.3 28 27.3 46 24.3 273.6

Table 1. Performance comparison A (ICCMA’15/ICCMA’17 benchmarks, number of solved instances) of
our approach (HAYWOOD) with the best three reduction-based solvers from ICCMA’17 (pyglaf, argmat-
sat, goDIAMOND), the best reduction-based solver from ICCMA’15 (ASPARTIX-D), and all direct solvers
from ICCMA’17 (ArgTools, heureka, EqArgSolver); our approach is parametrised with four versions for
M = 2|Arg|,G = 0.8 (HAYWOOD-1), M = 6|Arg|,G = 0.8 (HAYWOOD-2), M = 10|Arg|,G = 0.8 (HAYWOOD-
3), and M = 14|Arg|,G = 0.8 (HAYWOOD-1); every cell gives the number of correctly solved instances within
the time limit of 10 minutes (averaged over 3 runs)

increasing values for M. On the other hand, Figure 2 (b) shows how many graphs could
be solved with three different but fixed values for M and increasing values for G.

We see that very low values for M are generally decreasing the performance of the
solver significantly while increasing the parameter G has a significant positive impact
with the optimal value being in between 0.8 and 0.9 for the test set (note that very large
values for G such as 0.999 or even 1 result in almost zero solved instances as greedy
moves alone are not sufficient; this is not visible from Figure 2 (b) alone). Moreover, for
medium and high values of G such as G = 0.8 the value of M has almost no impact. In
fact, many graphs from the test set are solved without a single restart.

From the result of the parameter optimisation we decided to take four variants of
HAYWOOD into the performance comparison: for M = 2|Arg|,G = 0.8 (HAYWOOD-1),
M = 6|Arg|,G = 0.8 (HAYWOOD-2), M = 10|Arg|,G = 0.8 (HAYWOOD-3), and M =
14|Arg|,G = 0.8 (HAYWOOD-4).

5.3. Performance comparison

The next experiment (performance comparison A) compares the performance of our four
solver variants with the seven state-of-the-art solvers mentioned earlier on the actual
benchmark graphs from both ICCMA’15 and ICCMA’17. More precisely, the solvers
we included are pyglaf 0.2, argmat-sat 1.0.0, goDIAMOND 0.6.6, ASPARTIX-D (IC-
CMA’15 version), ArgTools 2.0.0, heureka 0.2, and EqArgSolver 2.76. We used all test
sets 1-5, 7-9 from ICCMA’159 and group B from ICCMA’17 (the latter contained the
graphs used for the stable semantics track) but removed all graphs without a stable ex-
tension (in particular we removed the complete test set 7 from ICCMA’15 because of
this reason). We ended up with 322 benchmark graphs in total10.

9Note that test set 6 was not used in ICCMA’15
10The used instances can be downloaded from http://mthimm.de/misc/slsinst.zip
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Barabási-Albert random graphs with varying number of arguments Sum
10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

pyglaf 17 23 28 36 41 51 67 70 77 82 492
goDIAMOND 31 56 76 111 140 168 213 259 300 335 1689
ASPARTIX-D 12 17 23 30 35 44 62 61 70 76 430
ArgTools 47 168 369 644 1004 1447 2017 2629 3359 4130 15814
HAYWOOD-1 7 7 9 12 16 19 21 22 29 33 175
HAYWOOD-2 6 5 9 11 11 13 17 21 23 27 143
HAYWOOD-3 6 6 9 8 11 13 17 19 24 27 140
HAYWOOD-4 5 7 7 9 10 13 20 20 24 25 140

Table 2. Performance comparison B (Barabási-Albert graphs, total runtime) of our approach (HAYWOOD) with
the best three reduction-based solvers from ICCMA’17 (pyglaf, argmat-sat, goDIAMOND), the best reduction-
based solver from ICCMA’15 (ASPARTIX-D), and all direct solvers from ICCMA’17 (ArgTools, heureka,
EqArgSolver); all solvers which had at least one timeout on any instance have been removed (these were
argmat-sat, heureka, EqArgSolver); our approach is parametrised with four versions for M = 2|Arg|,G =
0.8 (HAYWOOD-1), M = 6|Arg|,G = 0.8 (HAYWOOD-2), M = 10|Arg|,G = 0.8 (HAYWOOD-3), and M =
14|Arg|,G = 0.8 (HAYWOOD-1); every cell gives the total runtime in seconds (rounded) on all correctly solved
instances within the time limit of 10 minutes (averaged over 3 runs)

We asked every solver to determine a stable extension and set a timeout of 10 min-
utes. We repeated this experiment three times and took the average over these three runs.
Table 1 shows the results in terms of number of solved instances within the time limit
(the larger the better). We can see that the performance of our approach does not reach
the performance of the best reduction-based approaches but beats two of the three direct
approaches (note also that the used version of ArgTools is an updated version and not the
one used at ICCMA’17).

However, stochastic local search algorithms usually show their true advantage when
applied to random instances [2, Chapter 6]. So we did another experiment (performance
comparison B) on benchmark graphs generated using the Barabási-Albert model (this
models showed the most significant impact compared to other random models such as
Erdős-Rényi and Watts-Strogatz). In particular, we generated 10 graphs with 10,000
to 100,000 arguments (in steps of 10,000 arguments) using AFBenchGen211 with the
BA WS probCycles parameter set to 0.9 (this parameter controls the probability of an
argument being part of a cycle). Again we asked every solver to determine a stable ex-
tension, set a timeout of 10 minutes, and repeated this experiment 3 times, taking the
average over number of solved instances and runtimes. Almost all solvers were able to
solve all 100 instances in all three runs, the remaining ones (argmat-sat, heureka, EqArg-
Solver) were not considered further. Table 2 shows the results in terms of total runtime
(in seconds) over all solved instances (the lower the better).

The results of the latter experiment show a significant performance increase of our
approach. While the best direct approach needed a bit over 4 hours to compute all so-
lutions and the best reduction-based approach a bit over 7 minutes, our approach only
needed about 2-3 minutes, therefore quite drastically outperforming even the best direct
approaches. Although the general performance of our approach is mid-range, the dras-
tic performance jump on specific instances such as instances generated by the Barabási-
Albert model, shows that the approach is indeed competitive.

11https://sourceforge.net/projects/afbenchgen/
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6. Summary and Future Work

We developed stochastic local search algorithms for the problem of finding a single stable
extension of an abstract argumentation framework. By means of an empirical evaluation
we showed that our approach is competitive and outperforms state-of-the-art in certain
random graph models.

In this paper we focused on the problem of finding a single stable extension but the
general algorithm can be applied to other problems and semantics as well, in particu-
lar concerning problems of deciding credulous or skeptical acceptance (and less to the
problem of enumerating extensions). Future work is about exploring the feasibility of the
approach to these other problems.
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