
A Controlled Natural Language for
Financial Services Compliance Checking1

Shaun AZZOPARDI 2, Christian COLOMBO and Gordon J. PACE
Department of Computer Science, University of Malta, Malta

Abstract. Controlled natural languages have long been used as a surface form for
formal descriptions, allowing easy transitioning between natural language specifi-
cations and implementable specifications. In this paper we motivate the use of a
controlled natural language in the representation and verification of financial ser-
vices regulations. The verification context is that of payment applications that come
with a model of their promised behaviour and which are deployed on a payments
ecosystem. The semantics of this financial services regulations controlled natural
language (FSRCNL) can produce compliance checks that analyse both the promised
model and/or monitor the application itself after it is deployed.

Keywords. financial regulations, controlled natural language, compliance checking,
regulation formalisation

1. Introduction

Financial services exist under a highly regulated legal regime, given the high risk of dis-
ruptive behaviour such as money laundering. Financial institutions usually have dedicated
compliance departments that aim to reduce legal liability by ensuring legal compliance,
but ensuring compliance is difficult and thus results in substantial a priori investment.
Particularly, this need for compliance may discourage such institutions to act as service
providers to financial programmes (e.g. by performing transactions as directed by payment
applications), especially when they are developed and managed by newcomers to the field,
given the element of risk involved.

Automated methods to compliance checking could partially circumvent this problem,
allowing for confidence that payment applications are behaving correctly. In the context
of compliance of applications one can make use of a multitude of already existing analysis
techniques to enforce compliance. However, a particular problem with such an approach
is that there is a gap between the formal specification languages of existing analysis tools
and the language of the regulations to be checked or enforced. Moreover, legal experts
cannot be expected to understand the former, making such specifications not amenable to
validation by domain experts.

1This research has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant number 666363.

2Corresponding Author: Shaun Azzopardi, Department of Computer Science, University of Malta, Msida,
Malta; E-mail: shaun.azzopard@um.edu.mt.

Controlled Natural Language
B. Davis et al. (Eds.)
© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-904-1-11

11

In this paper we discuss our experience in tackling this problem by developing a
controlled natural language (CNL) to allow the specification of legal compliance checks in
the context of financial services regulations. The Financial Services Regulation Controlled
Natural Language (FSRCNL) is a subset of the English language, allowing for easy
uptake, while it has an unambiguous semantics. We developed this CNL in the context
of an industrial project, the Open Payments Ecosystem (OPE) [4], and used it mainly to
encode the Gibraltar and UK transpositions of the Payment Services, the E-Money, and
the Anti-Money Laundering EU Directives. A novel feature of this CNL is that it consists
of two sublanguages which are given semantics in different logics. Although not visible
from the point of view of the user, since the structure of the language is uniform, the use
of different logics allows the specification of regulations that are verifiable at different
phases of a payment application’s lifetime.

In this paper we detail our experience with this CNL, starting in Section 2 with an
overview of the iterative process taken with experts to elicit the meaning and the language
of the regulations. We then discuss FSRCNL by giving an overview of its grammar in
Section 3 and the corresponding formalisation in Section 4. In Section 5 we discuss
qualitatively the CNL and the lessons learnt from its use. In Section 6 we consider related
work, before concluding in Section 7.

2. Analysing Financial Services Regulations

Identifying the relevant pieces of legislation which regulate a given system and formalising
them is a challenging process. In particular, doing this manually can be prohibitively
expensive, given their length and density. General approaches exist to aid such a process by
automating the translation of natural language legal documents into a formal representation
e.g. [17,5], with varying success. In the narrower scope of building a compliance checking
engine for a particular system and domain, this problem is less acute, even though the
interaction between the legal and technical experts still requires substantial effort. In
our context, the compliance engine had to be incorporated within a general framework
(the Open Payments Ecosystem, or OPE) to be used by developers to construct financial
applications, which led to two major challenges: (i) the compliance engine had to be
developed to work for any system communicating with the OPE; (ii) the legislation is
different from one country to another, and changes on a regular basis, and thus a solution
which supports easier update and transposition was required.

2.1. Identifying Automatically Verifiable Regulations

One of the major challenges in using automated analysis of legal texts is that the domain
covered by legislation is much wider than the one for which compliance systems usually
work — also true when restricting oneself to relevant legislative chapters e.g. the OPE
does not implement all the payment services regulated by legislation. This means that
pruning of legislation to relevant parts is a crucial first step. We thus undertook a manual
process of requirements elicitation that exploited legal experts’ intimate knowledge of the
regulations. A law firm was consulted, were we had direct contact with three lawyers, but
with other lawyers being consulted in the process from within the firm. This process started
with lawyers identifying which clauses in the legislation were relevant to the business

S. Azzopardi et al. / A Controlled Natural Language for Financial Services Compliance Checking12

(a) The formalisation process without FSRCNL. (b) The formalisation process with FSRCNL.

Figure 1. Alternate formalisation processes.

process of the system. Some of these clauses were however found not to be verifiable in
an automatic manner. For instance, consider our challenge of incorporating a compliance
engine within a library for building financial applications. A regulation may require that
relevant terms and conditions should be presented to the financial application user before
any transactions are carried out. However this cannot be easily verified since (i) displaying
of text is performed outside the scope of the library; and (ii) ensuring that the (free) text
of the terms and conditions makes sense is not possible with current natural language
technology. Such clauses were thus deemed unverifiable by the compliance engine even
though directly relevant to the domain. Thus, the lawyer-identified relevant clauses were
further filtered by the system’s developers to acquire a smaller set of verifiable clauses.

In order to support the communication between the teams involved, it was realised
that we needed to be able to maintain versions of these automatically verifiable regulations
in three formats (other than their representation in the regulations): informally (for the
lawyers to ensure that the interpretation is in compliance with the actual law), formally
(for the quality assurance team to ensure the meaning of the informal representation), and
using an executable representation (to be able to verify the formal regulations). However,
developing three versions of the specification in parallel (as illustrated in Figure 1a.)
would require an inordinate amount of replication of work. Furthermore, if these parallel
versions are developed separately, misunderstandings and ambiguities in interpretation of
terms between legal experts and developers could arise. For instance, the rule stating that

“Only prepaid instruments can be used with e-money” was misunderstood by developers,
since they associated a different meaning with the word instrument than that meant by
lawyers. This could easily have led to a mismatch between what should have been checked
and what was actually checked. Iterative meetings between the different teams uncovered
such discrepancies.

To avoid such problems in the future we opted to construct a CNL with a semantics
that is more aligned to what a legal expert expects. It can be used to specify regulations
with little prior knowledge of the system and allows executable specifications to be
automatically generated. Using this CNL as the primary source of compliance checks
places the duty of specification back on the actual domain expert, the legal experts. The
process aided with the use of the CNL, is illustrated in Figure 1b.

S. Azzopardi et al. / A Controlled Natural Language for Financial Services Compliance Checking 13

Regulation Acronym Verifiable Clauses

The Electronic Money Regulations 2011 (SI 2011/99) EMR 11

The Payment Services Regulations 2009 (SI 2009/209) PSR 14

The Money Laundering Regulations 2009 (SI 2009/209) MLR 4

Fourth Money Laundering Directive (EU) 2015/849 MLD4 0

European Commission’s Proposal for a Directive Amending MLD4 MLD5 2

Table 1. List of UK regulations considered.

2.2. The Language of the Regulations

Payment services are regulated tightly by the EU, with several relevant directives being
in force. The OPE is planned to be initially deployed in the UK but later to be extended
to cover other countries. We thus limited ourselves to the UK-specific implementations
of these directives, but covering also minor differences with the legislation of Gibraltar.
Table 1 illustrates the main UK regulations considered (and directives that were not
yet transposed at the time), their associated acronym as used here, and the amount of
clauses identified as verifiable (and specified using our CNL) from each of them. These
regulations cover programmes that perform some form of payment service (e.g. issuing
payment cards and other payment instruments), with each of these services performed by
a certain service provider licensed in an appropriate country. In this section we consider
the language of these clauses through examples.

Regulatory documents are normative documents, specifying what regulated entities
can and cannot do, starting with definitions of the domain-specific jargon, for example:3

EMR2(1) “electronic money” means electronically (including magnetically) stored monetary value as repre-
sented by a claim on the electronic money issuer which (a) is issued on receipt of funds for the purpose
of making payment transactions; [. . .]

These terms are then used to specify obligations and prohibitions restricting behaviour:

EMR45 An electronic money issuer must not award (a) interest in respect of the holding of electronic money;
or (b) any other benefit related to the length of time during which an electronic money holder holds
electronic money.

These kind of clauses identify the responsible entity (the issuer), the kind of norm (a
prohibition), and the relevant action or actions (awarding interest). To be able to enforce
this we need to at least be able to represent the forbidden behaviour or state. Syntax from
deontic logics can be used to model these norms e.g. using F to denote a prohibition, one
can write Fissuer(awardInterest). A regulation may also be conditioned on some limits
holding, both with respect to some time-frame or a monetary value:

ML13(7)(d)(ii) [. . .] if the device can be recharged, a limit of 2,500 euro is imposed on the total amount
transacted in a calendar year, except when an amount of 1,000 euro or more is redeemed in the same
calendar year by the bearer [. . .]

In summary, a representation to encode these regulations must then allow for specifying
what should take place, and negation to specify what should not. Articles in the legislation
tend to be limited to particular situations and contexts, motivating the need for a way
to represent the conditions necessary for a certain state to hold. Also, the representation
should include finance-specific notions and constructs, while allowing for both time and
monetary qualifiers.

3The following and all subsequent legal texts are taken from UK legislation.

S. Azzopardi et al. / A Controlled Natural Language for Financial Services Compliance Checking14

3. A Financial Services Regulations Controlled Natural Language

The Financial Services Regulations Controlled Natural Language (FSRCNL) was de-
signed to allow legal experts to specify compliance checks for payment services specific
entities (e.g. transactions, instruments, service providers). The vocabulary of the language
also includes verbs that can be used to specify relations between these entities (e.g. pro-
gramme p is regulated in the UK). Apart from these, the language includes (i) temporal
notions allowing for the expression of when something occurred (e.g. instrument i expired
less than 12 months ago), and (ii) monetary expressions specifying limits on a value (e.g.
transaction t deals with exactly 500 EUR). These can be combined to specify conditions
on aggregate values (e.g. the amount redeemed from i within a calendar year is less than
1000 EUR). Some interesting aspects of the language are the following:
Types The regulations define several payment-specific objects, as well as certain roles for
entities providing payment services. To handle the several laws regulating the behaviour
of entities taking such roles, we include the possibility of declaring quantified variables
over such types (roles) in FSRCNL (e.g. programme p).

〈TYPE-NAME〉 ::= programme | service provider | instrument | transaction | country
〈DECLARATION〉 ::= [(〈TYPE-NAME〉,)∗ or]?〈TYPE-NAME〉 〈VARIABLE〉

Payment relations/Sentences Basic relations between variables over the defined payment
types serve as the basis for sentences. These are of the subject-verb-object form, and can
be negated. They are used to specify both conditions limiting a clause and the state that
must hold given the conditions, as in:

For each instrument i and programme p, where i is an instrument of p , p is regulated in the UK ,

then e-money in i is redeemed without fees.

Monetary Expressions Monetary expressions can act as objects of a relation, e.g. one
can specify that a transaction t deals with exactly 500 EUR, allowing also for specifying
less than or more than a certain value.
Temporal and Country Qualifiers Relations can be further qualified with some temporal,
or location constraint, refining a relation to hold only in a certain country (e.g. given
service provider sp, and programme p, sp deploys p in the UK). Furthermore, we can also
refine sentences to a time period before or after a certain point in time (e.g. instrument i
expired less than 12 months ago).

〈QUALIFIED-SENTENCE〉 ::= 〈SENTENCE〉
| 〈SENTENCE〉 〈TEMPORAL-QUALIFIER〉
| 〈SENTENCE〉 〈COUNTRY-QUALIFIER〉

〈TEMPORAL-QUALIFIER〉 ::= in less than 〈TIME〉 | in more than 〈TIME〉
〈COUNTRY-QUALIFIER〉 ::= in 〈COUNTRY〉 | not in 〈COUNTRY〉

Guarded Declarations and Guards A FSRCNL specification can have a list of variable
declarations, which can possibly be guarded by a compound sentence (e.g. service provider
sp, and programme p where sp deploys p in the UK).

〈GUARDED-DECLARATION〉 ::= 〈DECLARATION-LIST〉 〈GUARD〉
〈GUARD〉 ::= ε | where 〈COMPOUND-SENTENCE〉
〈COMPOUND-SENTENCE〉 ::= [(〈QUALIFIED-SENTENCE〉,)∗ and]〈QUALIFIED-

SENTENCE〉
| [(〈QUALIFIED-SENTENCE〉,)∗ or]〈QUALIFIED-

SENTENCE〉
Quantifiers The variables declared can be universally or existentially quantified over.

S. Azzopardi et al. / A Controlled Natural Language for Financial Services Compliance Checking 15

Figure 2. OPE payment application business process with verification facilitated by FSRCNL.

〈QUANTIFIED-PROPOSITION〉 ::= For each 〈GUARDED-DECLARATION〉 then
〈COMPOUND-SENTENCE〉

| For at least one 〈GUARDED-DECLARATION〉 then
〈COMPOUND-SENTENCE〉

In FSRCNL, EMR45 would be represented as follows:

For each programme p, and instrument i, where i is an instrument of p, p is regulated in the UK,
and i deals with e-money, then i does not give time-based rewards.

The language and a parser for FSRCNL was built using Haskell and the parsec package,
using around 700 lines of code. The language was built from scratch, in a compositional
manner so as to allow for easy extension when the need arises.

4. Verifying FSRCNL Rules

We used FSRCNL in the context of an ecosystem that provides common functionality
needed for payment applications. The OPE was designed in such a manner that third party
payment applications are seen as black boxes interacting with service providers through
the OPE. While observing the runtime behaviour of applications enables the OPE to
ensure compliance, ideally non-compliant applications are not allowed to use the platform
upfront. Thus, developers are required to provide a promised model specifying assurances
about the application’s behaviour (e.g. the model can specify that the application will
only perform transactions within the UK). The compliance verification is divided into two
stages: (i) pre-deployment the OPE uses the developer-provided model of the application,
by statically verifying it against the formulated legislation; while (ii) post-deployment
verification involves the analysis of the dynamic features of an application in order to
ensure that it is working according to the constraints of the legislation and according to the
promised model that was used for the pre-deployment analysis (e.g. transaction values).
In this context, FSRCNL relations can either be linked to artifacts known pre-deployment
(statically) or to the actual application’s behaviour post-deployment (dynamically).

Syntax and Semantics The sentence form in FSRCNL is similar to a quantified pred-
icate logic implication, we can give static rules their semantics in terms of such a

S. Azzopardi et al. / A Controlled Natural Language for Financial Services Compliance Checking16

logic. For EMR45 we can give its semantics as follows, assuming a programme p:
∀i ∈ instruments(p) · regulatedIn(p,UK)∧ emoney(i) =⇒ noTimeRewards(i) . Given such a
semantics of the CNL, it is straightforward to take the payment application model (which
essentially provides information about the resource flow of the financial instruments which
the application will enable) and confirm that it complies to these quantified formulae.

Some relations in the FSRCNL cannot be linked to attributes known before deploy-
ment, and thus have to be pushed post-deployment. Recall regulation ML13(7)(d)(ii)

having guard: the amount redeemed from i within a calendar year is less than 1000 EUR.
This amount can only be known at runtime, and thus we postpone checking this rule to
post-deployment using a runtime monitor. The semantics of the post-deployment logic is
given in terms of an event-based language, as required for the runtime verification tool
VALOUR [2].

For instance, from regulation ML13(7)(d)(ii), VALOUR generates executable code
for each instrument (i) keeping a running total of amounts redeemed from transactions
(on that instrument), reset upon the beginning of a calendar year; and (ii) setting up a
guarded event to trigger when the running total exceeds e1000, signalling a violation of
the regulation.

These checks are applied directly to the OPE (via the Java code generated from the
static analysis checks and the code generated by VALOUR), adding a safety layer around
the applications use of the API on the OPE side — ensuring that any compliance breach is
reported. Figure 2 illustrates the executable specification generation process through the
use of FSRCNL, and their verification at the different stages of an application’s lifetime
as explained in this section.

5. Discussion and Lessons Learnt

In this section we discuss several issues related both to the semantics and syntax of the
language, and lessons learnt from the process we undertook.

When analysing the regulations we found ambiguity between the terms used by the
lawyers and the developers, e.g. the term instrument was used to mean different but
similar things for both of them which created some problems in the formalisation early
on. Deciding to use the system-level constructs at a high-level could have led to behaviour
unintended by the legal expert authors. When designing a CNL, we can avoid such a
situation by taking into account the target authors of the language and their preconceptions
about its vocabulary, and putting that above any other considerations. In fact we geared
the language of our CNL to keywords and phrases as found and used by the legal experts,
hiding the verified system’s constructs in the semantics of the language.

The CNL however still uses somewhat unnatural structures more reminiscent of logic
rather than legal text, particularly explicit quantification and variables. These are used
to remove the ambiguities of the anaphora common in natural language text. Although
we aimed for the CNL to be as natural as possible, removing any avenues for ambiguity
necessarily results in a somewhat formulaic structure [10]. The effect of this on the
usability of the language has not yet been evaluated with legal experts. Development of
FSRCNL only started after the process illustrated in Figure 1a was largely over, and given
the nature of the project, the legal experts were not available for evaluation.

In the process of requirements elicitation, as common with natural language texts,
we found the laws to be ambiguous or underspecified at times, e.g. one clause specifies

S. Azzopardi et al. / A Controlled Natural Language for Financial Services Compliance Checking 17

that issuing of e-money should be done without delay4. With these kind of regulations
the lawyers depended on guidance from relevant authorities and their experience, e.g.
without delay was interpreted as meaning that a certain delay was acceptable, namely the
amount of time needed to process such a request, and an approximate numeric value was
agreed with the developers. Thus the semantics we gave to FSRCNL encode a specific
interpretation of the regulations.

Given the narrow scope of the language, the variety of notions in the language, and
the limited kind of clauses that are automatically verifiable, we do not expect the language
will need substantial change in structure in the face of new regulations. This was validated
by our experience when constructing the language. The language was based on two sets
of regulation documents (the e-money and payment services regulations). We then further
extended it with respect to the money laundering (ML) related regulations. This extension
of the language only involved the introduction of new ML-specific verbs. In this case the
general structure of the language was found to be adequate to represent the previously
unseen regulations.

In [14] Kuhn introduces a classification scheme for CNLs, namely the PENS scheme,
standing for precision, expressiveness, naturalness, and simplicity. Each dimension is
restricted to five classes where, e.g., for precision (or lack of ambiguity), P1 denotes the
lowest possible precision and P5 the highest. According to the definitions given by Kuhn,
we would classify FSRCNL as P4E3N3S4. The language is not maximally precise since
the semantics of its basic sentences depend on the underlying system, in our case the
OPE, while expressiveness is limited since it does not include second-order universal
quantification. Naturalness of the language is reduced by the use of variable declarations
(which is not something every English user would feel to be natural) and by the repetitive
nature of the specifications. Simplicity is defined in terms of the length of an “exact and
comprehensive description”, S4 denotes that FSRCNL can be described in not more than
ten pages.

We consider briefly the application of the language to verification of applications. In
verification although we ideally want to prove the application correct pre-deployment, this
may not always be possible (e.g. its source code is not available, or Turing-completeness
of the code makes this difficult), and we may have to leave some work for after deployment
[3]. FSRCNL is a key part in our approach to this problem in the context of the OPE —
the parser we developed for FSRCNL is able to automatically classify specifications into
those that can be proven fully pre-deployment, and those that have to be left for runtime.

6. Related Work

CNLs have been applied to serve as an interface to verification tools before [15,13,12].
In particular, Grover et. al. in [12] specify a language for the verification of hardware
models that translates into a temporal logic. This work proposes allowing CNLs to have
some ambiguity, since some words may be inherently ambiguous, while managing it by
presenting the different interpretations to the user for feedback. In our work we opted for
a CNL without ambiguity for ease of processing. Future work could include considering
different modalities of FSRCNL depending on the kind of user using it (legal expert or

4UK Electronic Money Regulations 2011 Regulation 39(a).

S. Azzopardi et al. / A Controlled Natural Language for Financial Services Compliance Checking18

developer), and letting the user choose between different options of semantics for some
terms (e.g. to vary the processing time allowed for “without delay”).

Similar to our paper, [15] presents a CNL for the specification of regulations to be
verified against a model but in the context of railways. Like other CNLs intended for
legal source representation (e.g. [1,7,16,8]), it makes explicit use of deontic notions (i.e.
obligation, permission, and prohibition). We found the current form of FSRCNL to be
enough to specify what should be specified, but the introduction of explicit deontic notions
can be considered if it will facilitate a legal expert’s understanding of the language.

A popular English CNL that can be mapped to first-order logic is Attempto Controlled
English (ACE [11]). Subsets of it has been mapped to logics for different domains, e.g. a
privacy policy language [9]. Using ACE allows the use of different already existing tools
to reason with the specification. We opted to develop our own CNL to be fully in control
of its syntax.

Previous CNLs by authors of this paper dealing with analysis took the form of
imperative commands [6,10], in that they were used to instruct the system what actions to
take. On the other hand, FSRCNL sentences are declarative, with the semantics engine
inferring the instructions for checking for the specified conditions, thus acting as a filter.

7. Conclusions

We have reported on our experience of developing a controlled natural language (CNL)
for the compliance checking of financial services regulations in an industrial project. The
language was developed to replace a manual process of developing these checks, involving
multiple stakeholders and artifacts. Our intention is to use the Financial Services Regula-
tions CNL to allow legal experts to specify rules that both document and automatically
generate implementable compliance checks. We hypothesise that using FSRCNL will
streamline this process. The next step in this work is to evaluate this language with legal
experts in terms of ease of use, upon the introduction of new applicable legislation.

References

[1] Krasimir Angelov, John J. Camilleri, and Gerardo Schneider. A framework for conflict analysis of
normative texts written in controlled natural language. The Journal of Logic and Algebraic Programming,
82(5):216 – 240, 2013. Formal Languages and Analysis of Contract-Oriented Software (FLACOS’11).

[2] Shaun Azzopardi, Christian Colombo, Jean-Paul Ebejer, Edward Mallia, and Gordon J. Pace. Runtime
Verification using VALOUR. EPiC Series in Computing, Volume, 2016.

[3] Shaun Azzopardi, Christian Colombo, and Gordon Pace. A Model-Based Approach to Combining Static
and Dynamic Verification Techniques, pages 416–430. Springer International Publishing, Cham, 2016.

[4] Shaun Azzopardi, Christian Colombo, Gordon J. Pace, and Brian Vella. Compliance Checking in the
Open Payments Ecosystem, pages 337–343. Springer International Publishing, Cham, 2016.

[5] Shaun Azzopardi, Albert Gatt, and Gordon J. Pace. Integrating natural language and formal analysis for
legal documents. In 10th Conference on Language Technologies and Digital Humanities 2016, 2016.

[6] Aaron Calafato, Christian Colombo, and Gordon J. Pace. A controlled natural language for tax fraud
detection. In Proceedings of the 5th International Workshop on Controlled Natural Language - Volume
9767, CNL 2016, pages 1–12, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[7] John J. Camilleri, Gordon J. Pace, and Michael Rosner. Controlled natural language in a game for
legal assistance. In Michael Rosner and Norbert E. Fuchs, editors, Controlled Natural Language, pages
137–153, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

S. Azzopardi et al. / A Controlled Natural Language for Financial Services Compliance Checking 19

[8] John J. Camilleri, Gabriele Paganelli, and Gerardo Schneider. A cnl for contract-oriented diagrams. In
Brian Davis, Kaarel Kaljurand, and Tobias Kuhn, editors, Controlled Natural Language, pages 135–146,
Cham, 2014. Springer International Publishing.

[9] Juri Luca De Coi, Philipp Kärger, Daniel Olmedilla, and Sergej Zerr. Using Natural Language Policies
for Privacy Control in Social Platforms. Heraklion, Greece, Jun 2009. CEUR-WS.org.

[10] Christian Colombo, Jean-Paul Grech, and Gordon J. Pace. A controlled natural language for business
intelligence monitoring. In Chris Biemann, Siegfried Handschuh, André Freitas, Farid Meziane, and
Elisabeth Métais, editors, Natural Language Processing and Information Systems, pages 300–306, Cham,
2015. Springer International Publishing.

[11] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled English for Knowledge
Representation, pages 104–124. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[12] Claire Grover, Alexander Holt, Ewan Klein, and Marc Moens. Designing a controlled language for
interactive model checking. In Proceedings of the 3rd International Workshop on Controlled Language
Applications (CLAW 2000), 2000.

[13] Kristofer Johannisson. Natural Language Specifications, pages 317–333. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

[14] Tobias Kuhn. A survey and classification of controlled natural languages. Comput. Linguist., 40(1):121–
170, March 2014.

[15] Bjørnar Luteberget, John J. Camilleri, Christian Johansen, and Gerardo Schneider. Participatory ver-
ification of railway infrastructure by representing regulations in railcnl. In Alessandro Cimatti and
Marjan Sirjani, editors, Software Engineering and Formal Methods, pages 87–103, Cham, 2017. Springer
International Publishing.

[16] Gordon J. Pace and Michael Rosner. A controlled language for the specification of contracts. In Norbert E.
Fuchs, editor, Controlled Natural Language, pages 226–245, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[17] Adam Z. Wyner and Guido Governatori. A study on translating regulatory rules from natural language to
defeasible logics. In Joint Proceedings of the 7th International Rule Challenge, the Special Track on
Human Language Technology and the 3rd RuleML Doctoral Consortium, Seattle, USA, July 11 -13, 2013,
2013.

S. Azzopardi et al. / A Controlled Natural Language for Financial Services Compliance Checking20

