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Abstract. The development process for the new kind of Intelligent Factories and 
Industry 4.0 systems requires a different approach than before, because the 
complexity and flexibility of all industrial systems increases. The development 
process has to ensure that every product is manufactured at the end with an 
efficient production process. Under these conditions, data management and the use 
of simulations become more important. Furthermore, the couplings and 
interrelations between product and means of production play a key role in the areas 
of digital factory and virtual commissioning. Only by using both simulation 
methods it will become apparent how the product can be manufactured. But to 
create a virtual commissioning model, a lot of data is needed from the entire 
development process. This data is usually generated interdisciplinarily by people 
from various departments. However, today's form of data management as 
information transfer is only conditionally suitable for efficiently building up a 
digital factory as a simulation model or even making a virtual commissioning of a 
production system. Due to the fact that in the development process a lot of IT 
systems with interfaces inbetween are used, loss of information is quite common 
experience. This is where graph-based design languages come in. Using this 
modeling language approach, the product is completely digitally described and 
then the means of production are derived from the product properties automatically. 
This creates a consistent digital product life cycle from the initial product 
requirements to virtual commissioning. 
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Introduction 

Virtual Commissioning is a key technology for improving the reliability, quality and 
efficiency of production systems by providing the ability to test, evaluate and improve 
production systems based on their digital mock-up prior to assembly (see [1], [2]). At 
present however, mainly large companies use this technology because the skills 
required to create simulation models are quite extensive and do require a great deal of 
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effort. Innovative technologies such as Industrie 4.0 or Internet of Things (IoT) will 
increase flexibility of the production system (see [3], [4], [5]). However, this also leads 
to an enormous increase in complexity of production systems with respect to the 
already existing technical and organisational complexity.  

In order to maintain their current market share, the use of technologies such as 
virtual commissioning makes also sense for small and medium-sized companies. 
However, the greatest effort at present is to create and update the simulation models 
required for virtual commissioning, and with the increasing information management 
complexity this problem will become even greater.  

One possible solution to this problem is the automated creation of simulation 
models using graph-based design languages. The use of this design language approach 
results in a continuous digital product life-cycle from the requirements definition phase 
to the virtual commissioning of new plants and systems. Many variants of the 
production process of a product can be simulated by the automatic creation of the 
models. The best process is determined by evaluating the simulation results. This 
automation distinguishes the graph-based design language approach from today's 
common programs for virtual commissioning and the digital factory as CAD-CAE 
software such as Process Simulate and DELMIA. 

1. Graph-based design languages and AutomationML 

The methodology described in this paper for a simple and automatic creation of 
simulation models for Digital Manufacturing and Virtual Commissioning includes two 
main concepts. This chapter provides a general overview of these concepts. 

1.1. Graph-based design languages 

Graph-based design languages are used to systematize and automate development 
processes based on abstract knowledge in order to achieve the best possible result (see 
e. g.[6], [7]). Graph-based design languages possess the following three aspects: 

� Vocabulary 
Vocabulary is part of abstract knowledge. It describes the available 
components within the design language and their correlation to each other.  
 

� Rules 
The rules form the second part of abstract knowledge and they are basically 
the blueprint for the design process. The rules can be influenced by a variety 
of parameters, which may lead to completely different models. 
 

� Compilers 
A compiler is used to create instances of the design described in the 
vocabulary and rules. The model created by the compiler can then be used as a 
central model for various other applications. 
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Figure 1. Overview of graph-based design languages (based on [8]). 

Graph-based design languages can be used to generate all properties of the target 
model, e. g. the geometry of a robotic installation and the Robot code required for 
programming the robotic installation. For virtual commissioning, the generated 
simulation model is then used together with the controllers for the machines and the 
robots as interactive simulation. The controllers can be real hardware, e.g. Siemens S7 
or software programs such as Beckhoff TwinCAT. Figure 1 provides an overview of 
the relationships within the graph-based design language process.  

The current research project ´Digital Product Lifecycle (DiP)´ uses the Design 
Compiler 43 of the company IILS mbH [9], a system capable of creating and executing 
graph-based design languages. This system has already been used in several research 
and business projects (see e. g. [9], [10]) and has proven its usefulness for the 
improvement of machine and plant development processes. The aim of the research 
project is to automatically and optimally implement the development process of an 
engine hood as a product together with the development of the production line for its 
manufacture by means of graph-based design languages.  

1.2. AutomationML 

AutomationML (Automation Markup Language) is a neutral data format for storing 
and exchanging plant planning data. The data format is based on XML. The aim of 
using AutomationML is to exchange data in a heterogeneous IT landscape of 
engineering tools. Areas of application include mechanical design, electrical design, 
PLC or robot programming. The data exchange format AutomationML is standardized 
in IEC 62714, whereby both the part "Architecture and general requirements" and the 
part "Role class library" are already international standards.  
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AutomationML is expected to become the official standard format for data 
exchange between IT engineering tools for the development of Intelligent Factories and 
Industry 4.0 systems, as it offers the possibility to serve a wide range of engineering 
application areas (see e. g. [11], [12]). It can contain much more information than a 
CAD exchange format such as JT, STEP or IGES. In order to make AutomationML 
easily accessible to users, several open standards such as COLLADA and PLCopen 
XML are used in parallel in their syntax. 

 
Figure 2. AutomationML Overview (based on [13]). 

These open standards used by AutomationML [14] are shown in Figure 2. The 
AutomationML file itself is based on CAEX format (IEC 6242424) which has been 
slightly modified to meet the technical requirements. The CAEX format is XML-based 
and easily extensible by linking to other files. 

For the representation of geometry, COLLADA standard is used, which is able to 
store a geometry as an edge representation, as it is typically used in CAD programs, as 
well as a triangulated mesh representation. In addition to simple geometry, COLLADA 
standard can also contain information about kinematics and physics of an object as well 
as other geometric information. 

The use of AutomationML as a data format for virtual commissioning is 
particularly interesting due to the integration of the PLCopen XML format. These 
format is based on IEC61131-3, which can be used to store and transfer logic data used 
by programmable logic controllers for machines or robots. 

2. Methodology  

This chapter describes the creation process of the AutomationML file for virtual 
commissioning models with graph-based design languages. This process consists of 
four steps: 

1. (manual) definition of vocabulary 
2. (manual) definition of rules 
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3. (automated) compiling 
4. (automated) creation of the AutomationML file 

2.1. Definition of the Example 

The following subchapters explain the use of graph-based design language using an 
application example (see [16], [17]). The example is a robot cell consisting of two 6-
axis robots. To create a functional model of this cell, the following data and 
characteristic values of the components must exist: 

� CAD data of all components of the cell 
� Motion-optimized assembly structure for the robots 
� Definition of the robot movement sequence 
� Definition of inputs and outputs within the cell 

2.2. AutomationML vocabulary 

The basis of any graph-based design language is the vocabulary that defines what can 
be used in the development process. There are different subgroups of the required 
vocabulary for AutomationML. The most important subsets are: 

� CAEX 
� PLCopen XML 
� COLLADA 

In this paper, only the CAEX subset is shown for simplification. 

 
Figure 3. Part of the CAEX Vocabulary. 

Figure 3 shows how vocabulary and interdependencies are modeled as UML structure. 
The mapped CAEXBasicObject is the basis for the other CAEX objects. It has a 
description, copyright, version, changeMode and (not shown in the picture) a revision. 
Since all other objects inherit from this object, they also have these attributes. The 

N. Beisheim et al. / Digital Manufacturing and Virtual Commissioning of Intelligent Factories 97



entire CAEX structure contains about 30 objects with their dependencies and attributes. 
The structure shown is based on the CAEX directive IEC 6242424.  

The AutomationML standard extends the CAEX structure by four additional 
objects, which offer the possibility to define a position and rotation in vector space  
and to connect external PLCopen XML and COLLADA models with a CAEX object. 
The AutomationML structure is the basis for creating a technical vocabulary tailored to 
the specific needs of virtual commissioning. 

The robots mentioned in Section .1 as an example of application inherit from the 
InternalElement defined in the CAEX vocabulary on the basis of the UML structure. 
This allows the robot to be set up as a motion-optimized assembly structure. 

 
Figure 4. 6 axis robot as simplified UML structure. 

A robot is shown as an abstract UML model in Figure 4. To enable the robot model to 
reference the necessary CAD data, the COLLADAReferenceAttributeType of the 
AutomationML class model is used. 

The motion path of the robot's movements consists of different points with their 
position and rotation in vector space . As shown in the figure, a new class 
MotionPath has been created for the motion path to connect the points with the motion 
path and the robot. This helps a potential downstream engineering algorithm to identify 
the motion path and points to be used for motion synthesis. With the structure 
illustrated, the rule set described in the next section is able to create an instance of the 
robot model.  

For the creation of the robot cell, the functionality is still needed to connect the 
inputs and outputs of the robots in order to exchange any required signals within the 
logic part of the robot program. This can be done by the class IOLink, which is able to 
describe the connections between the two robots. For reasons of simplification, no 

2
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separate class is created because the functionality is already achieved by the existing 
class VC_PhysicalObject, which is also shown in Figure 4. 

2.3. Defining the rules and compiling 

This chapter describes the instance creation process of the robot cell described in 
sections .1 and .2. You need a set of rules that uses the defined vocabulary to create 
the instances correctly. In order to demonstrate the flexibility of graph-based design 
languages, the motion path and input/output connections of the robots are also 
generated.  

Rules are created according to a schema, i. e. to search for a certain element in the 
graph and to append newly created instances to the found element. An example of the 
rule formation within the robot cell example is, to search for the robotic cell as an 
element and append the two robots to it as new instances. The logic in which elements 
are connected is defined by the vocabulary. Figure 5 shows the rule formation for the 
creation of a robot. The rule searches for the VC_PhysicalObject with the name 
RobotCell and creates a 6-axis robot with all six axes. The connection to the other 
components is also defined within the rule. 

 
Figure 5. Rule for robot creation. 

The other rules for the robotic cell are created according to the same scheme:  

� Creation of the first robot cell consisting of a floor and a working device 
� Creation of the first robot 
� Creation of the second robot 
� Attaching a position attribute to each physical object 

2 2
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� Append a CAD reference to each physical object by either creating a new 
geometry within the compilation process or by linking existing CAD models. 

� Calculation and application of the positions of each physical object within the 
robot cell 

� Calculation and creation of the motion path for both robots, based on a point-
to-point motion. 

� Connection of the robots' inputs and outputs to each other if required 

The rule set can then be used to create the missing instances needed for the robot cell 
specified in the design language. This is done with the help of the Design Compiler 43 
[9], which was already mentioned in chapter 1.1. The compiler creates an instance 
graph that can be used by an engineering algorithm or an export interface. An example 
of such an instance diagram is shown in Figure 6. Each node in the graph contains the 
data of the simulation model as a result of the evaluation of the rules during 
compilation. 

 
Figure 6. Instance graph. 

2.4. The AutomationML file and its use 

The instance graph is the starting point for engineering algorithms and is an export 
interface. The AutomationML interface uses the instance graph to determine which 
subsections of the AutomationML target file must be filled. A typical AutomationML 
file consists of four sub-sections, which are composed as follows: 

� System Unit Class Library 
All classes used in this AutomationML model are described in this library. 
They are defined by their attributes, roles and interfaces. 

� Role class library 
This library is used to define roles within the model. A large number of roles 
are already predefined in the AutomationML standard. 

� Interface Class Library  
The interaction possibilities between objects are described in this library. An 
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example of a simple interface would be a mains plug for the power connection 
of a system.  

� Instance hierarchy 
The most important sub-section within the AutomationML file is the instance 
hierarchy. It declares the structure and relationships between the individual 
objects and can be used as a starting point for sophisticated engineering 
algorithms. 

For further use of the AutomationML model, it makes sense to fill all four sub-
sections, but it is not mandatory. Only the instance hierarchy is required for the robot 
cell example. Since the UML model of the example continuously uses CAEX and 
AutomationML class libraries, it is easy to generate the instance hierarchy. The 
algorithm that generates the instance hierarchy from the instance diagram runs through 
the diagram and searches for objects and their attributes that need to be serialized. 

The AutomationML file thus generated can then be imported into other industry 
standard applications, such as the RF: Suite program from EKS InTec GmbH [15], 
which is able to generate a graphical virtual commissioning model from the 
AutomationML model. There are also interfaces for AutomationML and PLC to the 
Game Engine Unity 3D [18] to create simulation models. By connecting PLCs to the 
machines and systems to be simulated as well as the robots, entire production lines can 
be automatically and virtually put into operation. The connection is made according to 
the AutomationML guideline using the PLCopen XML standard. Figure 7 shows the 
graphical simulation model of the application example robotic cell, which was created 
by using graph-based design language in combination with AutomationML. The model 
can be used for virtual commissioning including tests of robot movements. 

 
Figure 7. Graphical model for virtual commissioning 

3. Conclusion 

The use of AutomationML together with graph-based design languages enables a 
complete digital product lifecycle from requirement definition to virtual 
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commissioning. This makes it possible to optimally support development processes for 
the new type of Intelligent Factories and Industry 4.0 systems with IT tools. If the 
designer changes something about the product, all downstream development processes 
are generated completely and automatically in order to determine resulting changes, 
including the means of production. The article shows the application graph-based 
design languages using a robot cell as an example and the use of AutomationML as a 
data format for creating the simulation model for virtual commissioning. 
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