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Abstract. The Group technology (GT) constitutes a manufacturing philosophy that 
exploits similarities in product design and product processes. The information 
attained from the process sheets are organized in an incidence matrix with 
machines and parts. The goal is to assign parts to families and machine to cells, 
which are designed to produce a given part family such that the number of voids 
and exceptional elements in cells are minimized. This article considers the 
problem of the manufacturing cell formation, of combinatorial nature and proposes 
a hybrid genetic algorithm (GA) with a greedy cosntrutive method for its solution, 
aiming the minimizing of the inter-cell movement and maximizing the use of the 
machines inside a cell. Basically, the GA generates sets of machine cells, and the 
constructor method is applied to those cells to better assign part families to them. 
The k-means algorithm is also applied to refine these formations. The performance 
of the proposed framework, considering the efficacy of grouping and a set of GT 
problems available in the literature, is presented and discussed. 

Keywords. Group technology, machine-component cells, genetic algorithm, 
grouping efficacy 

Introduction 

The challenges of a globalized economy lead industries to define their strategic 

positions and, among others, to obtain good competitive advantages, crucial for their 

survival in the market. Also, as far as their productivity is concerned, companies 

already recognize the importance of production optimization, with special attention to 

layouts and their respective projects.  

In this scenario, Group Technology (GT), a manufacturing philosophy based on 

the principle of identifying and grouping machines and parts by similarity, is important, 

given the advantages obtained in all the design and manufacturing stages [1]. 

The cellular manufacturing layout is a result of the GT applied in productive 

processes and includes several steps, among them the Production Flow Analysis (PFA). 

This results in a binary machine-part incidence matrix. Cells are the arrangement of 
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these two types of elements, however they need to be optimized looking to minimize 

cross-cell flow and maximize intracellular motions.  

Problems of machine clusters based on binary machine-part incidence arrays are 

considered NP-arduous because of their combinatorial nature.  

In the literature related to the MCFPs there are a considerable number of methods 

applied in their solution, where some of the best known and used for quality 

comparison are: rank order clustering – ROC[2], modified rank order clustering - 

MODROC[3], Zodiac[4], Grafics[5], MST[6], GATSP[7], GA[8], similarity coefficient 

method- SLC[9], among others. 

Specifically, in the case of heuristics applied to the topic, other works, such as the 

simulated annealing (SA) approach presented by Rao[10], which uses the grouping 

efficacy index to measure the effectiveness of the grouping. With the same objectives, 

also the proposals based on the GAs of Roy and Komma[11] and the particle swarm 

optimization algorithm (PSO) approach presented by Husseinzadeh Kashan et al.[12].  

Recently, algorithms, modified to fit the structure of clustering problems, have 

attracted researchers. For example, James et al. [13] created cells applying their hybrid 

genetic algorithm, which combines a local search with a standard genetic clustering 

algorithm and concludes that a hybrid approach overcomes the standard clustering GA 

in terms of clustering effectiveness. 

Immersed in this context, this work presents a hybrid GA aimed at the solution of 

MCFPs, applying k-means as a way to improve the individuals of a population. The 

objective function of the algorithm is the coefficient of efficacy, known to be a good 

index of performance of cellular clusters, and also because it is used in specific GT 

problems obtained from the literature which one wishes to compare results.  

1.  Machine-part cell formation problem 

 

The problem of manufacturing cell formation (MCFP) in a binary matrix consists of the 

rearrangement of rows and columns to form families of parts and machine cells.  

The main objective is to relate machine cells and parts families. In order to do so, 

it is necessary to use functions that guide the performance of these groupings, such as 

machine utilization[14], grouping efficiency [3] and grouping efficacy [15] , etc. 

Among the several measures of quality that guide the optimized formation of these 

groups, two are the most frequently used: efficiency and; the efficacy of grouping. Its 

popularity is due to the simplicity of application[14]. 

The mentioned grouping efficacy (µ) proposed by Kumar and Chandrasekaran [15] 

is adopted for two reasons: first because it overcomes the weaker discriminating power 

of grouping efficiency measure [3] by assigning equal weight for the number of voids 

and the number of exceptional elements; the second reason is because the results 

obtained in the works used as performance comparison apply this group quality 

indicator. This measure is defined as follows: 
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where e is the total number of operations (1’s) in the given matrix, ev is the number of 
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voids (0’s in the diagonal groups), and eo is the number of exceptional elements (1’s 

out the diagonal groups). 

Also, Paydar e Saidi-Mehrabad[14] and Goncalves and Resende [16] offer 

numerous other justifications for their adoption as, among others: incorporates both the 

with-in cell machine use and the inter-cell movement; generates block diagonal 

matrices which are interesting in practice; it is independent from the number of cells, 

etc. 

Figure 1 shows an example a reordered binary machine-part incidence matrix. The 

green box indicates a void and a yellow, an exceptional element. A void means that, 

despite the machine and the part belong to the same group, this machine will not 

process the part. In other hand, an exceptional means that a intercellular movement will 

be necessary, since the part will be processed not exclusively inside de designed cell. 

Voids are not desirable, because they turn the cell more inefficient. The exceptional 

parts, in the same way, cause increasements in the processing time, among other 

complications. 

 

Figure 1. Example of a two cell formation of a reordered incidence matrix. 

 

Considering the example and the Eq. 1, it’s possible to calculate the efficacy 

coefficient of the grouping, since the e, e0 and ev can be easily found:  

%808,0
218

218
==

+

−
=µ   

2. The proposed heuristic for the problem of cell formation 

This paper presents an approach to the MCFP problem, involving genetic algorithm 

with a local search method to refine the solutions.  

The GAs allow to reach a region close to the optimum with brevity. Also, 

achieving better results may require more time, so procedures are used to accelerate 

these convergences. A common technique is neighborhood search, where an GA 

solution is used as the starting point for another, faster and more efficient optimization 

solver for local search. 

Aiming to minimize processing time and maximize quality of results, the k-means 

algorithm is aplied on a fully constructed chromosome in order to, by small exchanges, 

promote improvements in fitness, ie the efficacy of clusters. 

R.M. Branco and C.R. Rocha / Group Technology: Genetic Algorithm 819



2.1. The genetic algorithm with local search  

Genetic algorithms are search algorithms based on the mechanisms of natural and 

genetic selection. They combine survival of the individual among other individuals, 

with chain structures created, initially at random.  

The first work on this line was presented by Holland[17], aiming to replicate the 

processes used by the self-adaptive systems in a computational context. In fact, its 

objectives were to base a general theory of systems and robust adaptation, yet finding 

an excellent practical application, maximizing (or minimizing) mathematical functions.  

The GAs differ from the various heuristic methods because they present a group of 

distinct characteristics: operate on a set of points (population) and not from isolated 

points; operate in a space of coded solutions and not directly in the search space; they 

need as information only the value of an objective function (adaptability function, or 

fitness); use probabilistic transitions rather than deterministic rules [18].  

In general terms, an initial population is generated (the chromosome of each 

individual is formed randomly) and the fitness value is calculated for each individual. 

Genetic operators are applied to probabilistically selected individuals, based on their 

fitness, and a new generation of individuals is created. However, the evolution of new 

generations is also driven by the insertion of pairs of chromosomes in the current 

population using crossover and mutation. Only the chromosomes that present better 

fitness will have more chances in the selection. This procedure will repeat itself until an 

end criterion is reached.  

2.1.1. The chromosome: representation and decoding  

The chromosomes denote feasible solutions to the problem and their length will be 

equal to the number of machines plus the number of parts presented in the MxN matrix.  

 

Figure 2. Example of a chromosome denoting the two cell formation presented in Figure 1. 

 

Each gene in the chromosome string denotes a cell and, each locus, the machine 

(or part, depending on the portion under analysis) assigned. Thus, two information is 

contained in each locus (position) of the individual's string.  

2.1.2. Genetic operators 

As mentioned, genetic operators will be applied in the GA: cloning, crossover and 

mutation. Cloning a chromosome is just copying it to the next generation. In addition, 

the crossover determines the mechanism of combining two existing chromosomes and 
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creates two offsprings. These ones are selected by the roulette method [18], which 

gives greater chances to the fittest. 

To combine them, a random binary mask is also generated with the intent to 

coordinate the offsprings formation process. A “0” in the mask means that the 

information shoud be taken from the f1. Otherwise, f2 will be the information giver.  

At this point it is important to mention that, unlike the cloning operator, the others 

will only operate on the "machine" portion of the chromosome. The "pieces" portion is 

the result of the processing of the constructor algorithm, better seen later.  

Already, combined with the crossover operator, the mutation refers to random 

changes in the genes to escape local maximums and guarantee access to any solution of 

the space.  This operator acts on the new individuals generated, with a probabilistic rate 

of occurrence to each one, as can be seen in the Figure 3. 

 

Figure 3. The crossover and mutaion operators. 

2.2. The greedy construtive heuristic  

It is observed that in both the random creation of individuals and in the application of 

the crossover and mutation operators, only the portion of the chromosome referring to 

the machines are processed (as can be seen in Figure 3).  

As it is briefly shown in Figure 4, the constructor starts with the "pieces" portion of 

the chromosome already formed by some method (ie random, xover/mutation, etc.).  

 

 

Figure 4. An individual chromosome constructor algorithm. 

To create a group of machines with this greedy heuristic, it is necessary to have the 

similarity matrix, created through the incidence matrix (better explained later). Of 

Algorithm: final chromosome constructor 
 

 
  

 

Sm=matrix of similarity (machines);
I=individual with the machine portion already created; 

k=predefined number of cells; 
With I, do: 

Create k-groups of machines (cells) assigning the most similar among them; 
Create k-groups of pieces (families) designating each one, those with more 

frequent processing in each of the newly created cells; one piece can only be 
assigned to a single family;  
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these, the clustering starts doubling with the greatest similarities of the generated table. 

Cases where there are no links result in individual “islands” to be better grouped later.  

In the second step, the similarities between the groups (and “islands”) are 

calculated, by the sum of the individual similarities of each member of a group with 

each member of the other. Those with higher total values come together and form 

larger groups. This occurs until the size k (predefined number of cells) is reached for 

the groups. at the end, we have the desired k-groups, with the greatest similarities 

among their elements.           

Considering the formation of pieces, besides their matrix similarity, it is necessary 

to have the "machines" portion of the chromosome.  

In short, the procedure evaluates the frequency of occurrence of the parts, 

according to incidence matrix, in the groups of machines already formed. Those whose 

appearance is more frequent to a particular group, are assigned to it. The others, make 

up a list of eligible parts designation according to the largest number of processing of 

this part within each of the cells, when competing for various machines. Having no 

more eligible pieces, the loop ends and the k-groups have been created.  

2.3. The k-means procedure  

The k-means is one of the most applied non-hierarchical methods, that is, they produce 

partitions of the set of objects with previous knowing the quantity of these.  

It starts by defining k-centroids and, in successive iterations, groups the elements 

by criteria, such as least squares. The first centroids can be defined at random. Each 

iteration is recalculated as the average of the points belonging to its group. The 

iterations cease when there are no further changes in the centroids. 

In this case, the lines of an incidence matrix can be seen as binary vectors, for the 

purpose of calculating similarity or distance between points, which in this case has 

dimension equal to the number of pieces (n). In the same way, when transposed, the 

binary matrix emphasizes the pieces and each vector-piece will have dimension equal 

to the number of machines. Eq. 2 shows the distance equation, where xi and yi are the 

vectors; i = {1,…n} is the index that points to each position of the vectors.  

∑
=
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The calculation of the coefficient of similarity between two vectors (lines or 

columns) consists in the identification of the coincidences of 1's between them. To do 

this, an AND logic is applied between the bits of the binary vectors. A non-zero bit in 

Sij indicates that the corresponding part in the machine-component chart should be 

processed on both machines i and j. The higher the result, the greater the similarity 

between the evaluated elements. In this way, an array can be formed with the values of 

similarities between each of the elements with each other: the similarity matrix. The Eq. 

3 represents the similarity between vectors Ri and Rj:  

( )
jiij
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The proposed framework starts this algorithm considering a fully generated 

chromosome, promoting modifications in the "machines" part.  
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Applying the principle of k-means and starting from the centroids of these groups, 

the goal is to perform movements without being, however costly, so the reason to do 

only one round of the algorithm. In tracing an internal structure to the genetic algorithm, 

one can consider these movements as local searches. 

By calculating the centroids, it promotes exchanges based on the distances 

between the elements. After rebuilding the chromosome, the procedure on the "parts" 

partition is applied. The fully remodeled chromosome has calculated its adaptation, 

which, if better than the original chromosome, will replace it in the population. 

3. Computational results 

In order to compare the proposed framework with some others found in the literature, a 

program is developed in Python language to implement the algorithm. Also, the 

computer used in the tests is a notebook with i7 processor, model 7700HQ of 2.8GHz 

with 16GBytes of RAM. Although it was not the scope of the work, the 

implementation of the algorithms was done in Python, proved to be more than feasible 

for the construction of the necessary programming codes. In terms of performance, 

since it is an interpreted language, compared with another compiled one, it may 

perform poorly. Moreover, it is a computational language of easy development and vast 

material for support, besides being free.  

The 24 problems chosen for the tests are provided by Gonçalves and Resende [16]. 

The aforementioned authors also compare their proposal with other works, also listed. 

In its totality, considering what is presented, this proposal exceeds the average values 

presented. In some cases, the maximum value of effectiveness found is briefly lower 

than that found in other studies, but most of them match or exceed them. The 

information regarding the problems studied is present in Table 1. 

Table 1. Problems obtained from the literature for analysis. 

Problems Autor (source) Size Nr. cells 

p01 King, Nakorchai (1982) [19] 5x7 2 
p02 Waghodekar, Sahu (1984) [20] 5x7 2 
p03 Seifoddini (1989) [21] 5x18 2 
p04 Kusiak (1992) [22] 6x8 2 
p05 Kusiak, Chow (1987) [23] 7x11 3 
p06 Chandrasekharan, Rajagopalan (1989)[24] 8x20 3 
p07 Chandrasekharan, Rajagopalan (1989) [24] 8x20 2 
p08 McCormick et al. (1972) [25] 16x24 6 
p09 Srinivasan et al. (1990) [26] 16x30 4 
p10 King (1980) [2] 16x43 5 
p11 Carrie (1973) [27] 18x24 6 
p12 Mosier, Taube (1985) [28] 20x20 5 
p13 Carrie (1973) [27] 20x35 4 
p14 Chandrasekharan, Rajagopalan (1989) [24] 24x40 7 
p15 Chandrasekharan, Rajagopalan (1989) [24] 24x40 7 
p16 Chandrasekharan, Rajagopalan (1989) [24] 24x40 9 
p17 Chandrasekharan, Rajagopalan (1989) [24] 24x40 9 
p18 Chandrasekharan, Rajagopalan (1989) [24] 24x40 9 
p19 McCormick et al. (1972) [14] 27x27 4 
p20 Carrie (1973) [27] 28x46 9 
p21 Kumar, Vannelli (1987) [29] 30x41 11 
p22 Stanfel (1985) [21] 30x50 11 
p23 McCormick et al. (1972)[14] 53x37 2 
p24 Chandrasekharan, Rajagopalan (1989) [24] 100x40 10 
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The algorithm starts with the formation of population: 10% is intended for cloning 

of the best individuals, 10% for the formation of random individuals, and the remainder, 

designated for crossing and mutation. The population size is in 150 individuals, 

regardless of the size of the problem, as well as the mutation rate, by a value of 3%. 

Table 2 contains the information obtained from Gonçalves and Resende [16] about 

results of the algorithms: Zodiac[4], Grafics[5], MST[6], GATSP[7], GA[8] and their 

own proposal, here denominate G&R. 

Table 2. Comparisons of Percentage of Grouping Efficacy with different methods obtained from the 

literature for analysis. 

  Zodiac Grafics MST GATSP GA G&R 

p01 73,68 73,68 73,68 

p02 56,52 60,87 62,50 62,50 

p03 77,36 77,36 77,36 79,59 

p04 76,92 76,92 76,92 76,92 

p05 39,13 53,12 46,88 50,00 53,13 

p06 85,24 85,24 85,24 85,24 85,25 85,25 

p07 58,33 58,13 58,72 58,33 55,91 58,72 

p08 32,09 45,52 48,70 52,58 

p09 67,83 67,83 67,83 67,83 

p10 53,76 54,39 54,44 53,89 54,86 

p11 41,84 48,91 44,20 54,46 

p12 21,63 38,26 37,12 34,16 42,94 

p13 75,14 75,14 75,14 75,28 66,30 76,22 

p14 85,11 85,11 85,11 85,11 85,11 

p15 73,51 73,51 73,51 73,03 73,03 73,51 

p16 20,42 20,42 51,81 49,37 37,62 51,97 

p17 18,23 44,51 44,72 44,67 34,76 47,06 

p18 17,61 41,67 44,17 42,50 34,06 44,87 

p19 52,14 41,37 51,00 54,27 

p20 33,01 32,86 40,00 44,62 

p21 33,46 55,43 55,29 53,80 40,96 58,48 

p22 21,11 47,96 46,30 45,93 37,55 50,51 

p23 52,21 52,21 56,42 

p24 83,66 83,92 83,92 84,03 83,90 84,03 

 

In all, for each problem, 30 rounds of the genetic algorithm are performed. With 

this data, statistics are generated and reported in Table 3. Also, comparative data 

between the proposed algorithm and the those obtained in the literature (Table 2) are 

also related. 

Figure 5 presents the result of the diagonalization of the problem proposed by 

Waghodekar and Sahu  [20]; one of the problems that had the result of the literature [5] 

surpassed by the proposed framework (11,3%), as presented in Table 3. 

 

Figure 5. P02 original (a), ordered by the algorithm (b) and the information result from the program (c). 
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Table 3. Comparison of this approach and the literature. 

Approach results Improvement: Table 2 

vs. approach  Efficacy 

(µ) 

Computational  

time (s) 

 Max Min Avg Max Avg Max 

p01 73,68 0,01 0,02 0,06 0,0% 0,0% 

p02 69,57 0,02 0,03 0,05 14,8% 11,3% 

p03 79,59 0,02 0,04 0,14 2,1% 0,0% 

p04 76,92 0,02 0,03 0,07 0,0% 0,0% 

p05 56,25 0,53 1,52 2,52 16,1% 5,9% 

p06 85,25 0,02 0,04 0,00 0,0% 0,0% 

p07 58,33 0,26 0,30 0,08 0,5% -0,7% 
p08 49,52 64,74 64,74 0,37 10,7% -5,8% 
p09 67,83 0,132 1,54 0,00 0,0% 0,0% 

p10 54,60 15,28 61,47 64,74 0,6% -0,5% 
p11 53,10 9,25 9,25 8,12 12,1% -2,5% 
p12 39,23 125,14 125,14 107,65 12,7% -8,6% 
p13 76,14 0,48 0,51 125,14 3,1% -0,1% 
p14 85,11 0,19 0,23 0,00 0,0% 0,0% 

p15 73,51 0,18 0,25 0,59 0,2% 0,0% 

p16 49,02 1,75 8,92 0,00 27,0% -5,7% 
p17 42,02 13,12 13,12 0,33 7,8% -10,7% 
p18 39,57 1,710 5,54 0,47 5,6% -11,8% 
p19 53,54 20,10 39,81 24,92 7,7% -1,4% 
p20 37,80 131,08 131,08 13,12 0,5% -15,3% 
p21 59,35 184,74 184,74 14,99 19,7% 1,5% 

p22 51,89 16,72 16,72 131,08 24,8% 2,7% 

p23 56,72 12,61 22,20 184,74 5,8% 0,5% 

p24 84,03 2,03 21,96 0,00 0,1% 0,0% 

4. Final considerations 

In this study, a hybrid genetic algorithm is proposed with the aim of maximizing 

grouping efficiency in cell manufacturing problems. The results were tabulated in 

Table 3 considering fixed parameters for 24 problems obtained in the literature and 

after, compared with 6 proposals known for their solution. The results surpassed in all 

the average values obtained by these 6 frameworks.  

As can be seen in Table 3, comparing the results of the literature (Table 2), the 

algorithm obtains, for 7 (29%) problems values of grouping efficacy that are equal to 

the best ones. Also, it improves for 5 (20,8%). In 2 of them, the increasements are 

superior to 5%. Also, it is observed that all the average values obtained surpassed the 

means of results among the other applied methods. Also, for the 33% of the cases, the 

best solutions were already found in the first population. 

Although the Python language performs less than the compiled languages, the time 

to obtain the results was satisfactory. Associated with the fact that k-means is applied 

to refine the results, however it is very computationally costly. Despite this, it allows to 

accelerate the convergence in many of the studied cases. 
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