
Dealing with Data and Software
Interoperability Issues in Digital Factories

Nicola BICOCCHIa, Giacomo CABRI, Federica MANDREOLI

a,1 and Massimo
MECELLA

b

a
 Università degli Studi di Modena e Reggio Emilia, Italy

b
 Sapienza Università di Roma, Italy

Abstract. The digital factory paradigm comprises a multi-layered integration of
the information related to various activities along the factory and product lifecycle
manufacturing related resources. A central aspect of a digital factory is that of
enabling the product lifecycle stakeholders to collaborate through the use of
software solutions. The digital factory thus expands outside the actual company
boundaries and offers the opportunity for the business and its suppliers to
collaborate on business processes that affect the whole supply chain. This paper
discusses an interoperability architecture for digital factories. To this end, it delves
into the issue by analysing the main challenges that must be addressed to support
an integrated and scalable factory architecture characterized by access to services,
aggregation of data, and orchestration of production processes. Then, it revises the
state of the art in the light of these requirements and proposes a general
architectural framework conjugating the most interesting features of service-
oriented architectures and data sharing architectures. The study is exemplified
through a case study.

Keywords. smart factory, digital factory, interoperability framework, processes,
services, data space

Introduction

The digital factory paradigm promotes the integration of product design processes,
manufacturing processes, and general collaborative business processes across factories
and enterprises. An important aspect is to ensure interoperability between the machines,
products, processes, related products and services, as well as any descriptions of those.
Accordingly, a digital factory consists of a multi-layered integration of the information
related to various activities along the factory and product lifecycle manufacturing
related resources [1]. With the increasing support of cyber-physical systems, smart
electronics, sensors, robots, and embedded systems [2][3], data is constantly gathered
enabling context-aware service integration [4] and management [5].

Moreover, in the near future, (i) factories and machines will be increasingly
complex, (ii) dynamic situations will need to be managed during the whole product
lifecycle, (iii) customers will be provided with personalized products (mass
customization), (iv) human-centricity will be needed in order to increase flexibility,
agility, and competitiveness, and (v) suppliers and customers will change frequently.

1 Corresponding Author, Mail: federica.mandreoli@unimore.it.

Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0
M. Peruzzini et al. (Eds.)
© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-898-3-13

13

This vision of a nearby future for the digital factory is achievable through a general
interoperability platform, in which people involved in the design and production
processes are at the center, supported by the software tools in the implementation of
their manufacturing, service, and business objectives. To this purpose, in this paper we
propose a novel conceptual architecture based on three layers, data, services, processes,
where processes and goal descriptions trigger the discovery of the services and data
that best fit the expressed needs and their composition which is dynamic, autonomous
and adaptive, in order to fully exploit limited human feedbacks.

The remainder of the paper is organized as follows: Section introduces an
example application scenario used throughout the paper, whereas Section presents
our conceptual architecture. Section compares our work with related ones and
concludes the paper by discussing possible future directions.

1. The muffin factory application scenario and related challenges

In order to introduce the different concepts and approaches proposed in this paper, we
will use a case study. MyMuffin is a company operating in EU producing muffins
willing to expand its business by allowing clients to buy muffins online. Clients can
create their own muffins by picking pre-sets of ingredients and wait for its delivery2.

The client orders box(es) (each one containing 4 muffins) online, by choosing
among different possible variants, such as: (a) chocolate chips vs. blueberry vs. apricot
bits vs. carrot bits vs. nothing as additional ingredient; (b) butter cream vs. hazelnut
cream vs. icing sugar vs. nothing as topping; (c) yoghurt vs. honey vs. nothing in the
dough. The client can also customize the colors of the baking paper (wrapping the
single muffin) as well as the colors of the box.

The muffin factory collects orders and organizes batches of muffin doughs for
production. As an example, if a client asks for 3 boxes of carrot muffins with yoghurt,
icing sugar on top, pink baking paper, and another client for 2 boxes of carrot muffin
with yoghurt, nothing on top, yellow baking paper, the same dough can be used for
both. Clearly this scheduling service is based on the number of (and capacity of each)
dough mixers, the stream of received orders, etc. The factory has a pool of dough
mixers, of different capacity, and the fact that the number of different combinations is
finite guarantees that such a scheduling can be performed.

When an order is received, in parallel to the dough preparation, the baking paper
should be set-up as well. In addition to prepare a set of the specific requested color
baking paper (the collection in batch can be performed as well), a QR-code should be
printed on the baking paper and used as a unique identifier of the specific order. The
correct identification of the single muffin is crucial for customization. After the dough
has been prepared, the muffins are placed in the baking paper and sent to the oven
(connected to a QR code reader) for cooking. Muffins are cooked in batches of about
1000 items and the length of this step is equal for all of them.

2 MyMuffin is a fantasy company, but there are real successful examples of mass customization applied

to food, cf. Mymuesli, a German company - https://en.wikipedia.org/wiki/Mymuesli. MyMuffin is an
example of a small factory in which digital transformation can be applied in order to deeply modify
production processes and business opportunities. Our work can be applied to such small factories as
well as more complex ones, as in the automotive industry.

1
2

3

N. Bicocchi et al. / Dealing with Data and Software Interoperability Issues in Digital Factories14

https://en.wikipedia.org/wiki/Mymuesli

After the baking has been performed, the cart is operated in order to route the
different muffins to the right boxes, after putting the right topping, and then to the
proper delivery station. Depending on the order (quantity and location of the customer)
different delivery agents can be used.

Notably, flexibility is needed all along the process, e.g., the baking step may
overcook some muffins, which therefore are not ready for the delivery and should be
prepared again. This imply a communication with the delivery agent in order to skip
the planned retirement and to set-up a new one (e.g., after a few hours or the day after)
and also a re-scheduling of the mixers in order to re-introduce the preparation of the
given dough.

Figure 1. The process of MyMuffin. BPMN diagram, in which also public views of the

delivery agency and the customer are shown as well (i.e., the whole supply chain).

2. A reliable interoperability architecture for virtual factories

One of the key issues in digital factories is to provide, manage and use the different
services and data that are connected to the production processes. Manufacturing
machines typically provide data about their status and services. These services are
usually exploited at the digital factory level together with data and services coming
from other departments, such as purchasing and marketing. We face heterogeneous
situations: from the one hand, machines are from different vendors and, even if not
proprietary, they are likely to adopt different standards and vocabulary, and data are
managed by different systems as well; from the other hand, services can be provided at
different levels of granularity, from very fine grained one (in terms of functionalities)
to very coarse. As an example, the service of the oven may expose (simple fine
grained) operations for start() and stop() itself, whereas the scheduling service
exposes a (complex coarse grained) operation schedule(listOfOrders):
setOfMixerInstruction which takes the list of received orders (not yet satisfied
and up to the moment of invocation) and return the set of instructions to be given for

N. Bicocchi et al. / Dealing with Data and Software Interoperability Issues in Digital Factories 15

the dough to the different mixers3, The role of the digital factory is to integrate the
different services and data and to combine them in order to make the whole process as
efficient and competitive as possible in the achievement of the specific goals.

Another importation issue to be faced is the fact that the process can cover a space
wider than the single factory (it supports a supply chain): usually a factory gets the raw
material from suppliers and provide products or semi-finished products to customers,
through delivery agents, requiring the corresponding services and data to integrate to
each other or at least to be able to interact in a scalable and flexible way.

We propose to achieve this through a general three layer interoperability
framework, i.e., based on processes, services, and data, and assists users in the
achievement of their objectives through the discovery of service and data flows that
best fit the expressed requirements. In the following the three layers are detailed.

Process space layer - goal-oriented process specification

The top layer of the proposed architecture deals with the goals and the processes able to
achieve such goals. In the MyMuffin example, some goals of the process are: [G1] for
each order, evade it within 36 hours (where evade means the muffins are packed and
ready to be delivered); [G2] for each order, the final delivery to the customer should be
within 72 hours from the order. The MyMuffin company adopts a process in which
sub-goals might have been defined for specific parts (i.e., goals can in turn be
decomposed in sub-goals), e.g., in order to achieve G1, it should be [G1.1] muffin
should not be overcooked. Notably, MyMuffin would like to define, on the basis of
such goals, specific KPIs – Key Performance Indicators, which qualify the QoS of the
production process, e.g., the above 2 goals (i.e., G1 and G2) should be satisfied at least
on 95% orders, in which the interval of observation is every week for orders received
from Saturday 00:01 am till next Friday 23:59 pm.

Clearly goals and KPIs are defined over many aspects, including the interactions
with external companies being part of the process (e.g., the delivery agents having as
goal to employ maximum 24 hours from pick-up to delivery, and to keep a KPI of 95%
satisfaction over the week).

Service space layer - dynamic service discovery and composition.

Starting from the goals and processes defined in the process layer, services must be
dynamically composed to achieve the goal(s). In our example, we have different
machines that can expose operations such as setting/increasing/decreasing the oven
temperature, starting/stopping the dough mixer, etc., and providing data such as the
duration of the dough preparation, the temperature of the oven, etc. OpenAPIs are
exposed by such services in order to control, discover, and compose them in a dynamic
way. Rich semantic descriptions of the services should be available in the
interoperability platform, in order to support both the discovery of the services and
their execution/invocation. The descriptions should include some keywords that
identify the context of the service (e.g., “food”, “cooking”), the equipment (e.g., “oven”,
“mixer”), the performed operation (e.g., “turn-on”, “speedup”), and the parameters (e.g.,
“temperature”, “speed”).

3 MixerInstruction is an object which, for each mixer, details the ingredients to be put in the dough,

and the quantity of dough to be loaded/produced in that mixer for the current batch.

N. Bicocchi et al. / Dealing with Data and Software Interoperability Issues in Digital Factories16

With regard to the discovery phase, the semantic description is exploited to search
for specific services without knowing their exact name and their syntax a priori.
Semantic techniques can be exploited to find synonyms and keywords related to the
words searched for in this phase. Searches can be performed either automatically by the
process layer, in particular by the orchestration engine enacting processes, or by a
human operator acting in the factory, which may be involved when needed (e.g., the
adaptation techniques realized in the process layer fail, and a human intervention is
needed in order to make the process progress) [6].

But the semantic descriptions can be exploited also in the composition phase.
Being the composition dynamic, the platform must not only find but also exploit the
needed service in an automatic way or providing an effective support to the human
operator. To this purpose, the semantic description of the service parameters is needed
in order exploit the meta-services of the data layer to adapt the client service invocation
to the server syntax (see next subsection). Some proposals and examples of semantic
service descriptions exist, such as in the SAPERE project [7] mentioned later.

The dynamism is useful to handle unexpected situations, often notified by a human
operator; an example can be overcooked muffins, a case in which the courier must be
notified to modify the shipment and a new set of muffins must be produced starting
from the list of needed ingredients. To this purpose, the service
overcook():QRCode,type,num is available in the platform and can be activated
either by a monitoring facility or by human intervention. This service outputs the type
(type) and number (num) of the overcooked muffins and the corresponding order
(QRCode) and must be composed with two discovered services: one interacting with
the courier (e.g., shipment(URL) with the courier Web service as input) and one
activating the dosing machine (e.g.,
dosing_machine(ingredient,quantity) with ingredient and quantity as
input). The composition (see Figure 1) requires the connection of the output with the
input. Essentially, the composition connects the discovered services by making explicit
the relationships between the involved service parameters. ?x, ?y, ?z, ?h are
variables and the corresponding values must be discovered in the data space as they
represent the input to the two services, shipment and dosing_machine.

Figure 2. Service composition for the overcooked muffin.

Clearly, the platform must also consider failure situations, such as oven out of work,
refrigerator service not found, and so on. These issues require the frequent involvement
of humans in the loop in order to deal with them in an effective way.

N. Bicocchi et al. / Dealing with Data and Software Interoperability Issues in Digital Factories 17

Data space layer - service-oriented mapping discovery and dynamic dataspace
alignment.

Data are managed and accessed in a data space. The data space must be able to
deal with a huge volume of heterogeneous data by autonomous sources and support the
different information access needs of the service level. In particular, a large variety of
data types should be managed at the dataspace level. According to the level of
dynamicity, data can be static such as data available in traditional DBMSs but also
highly dynamic like sensor data that are continuously generated. Moreover, it should
accommodate data that exhibit various degrees of structures, from tabular data like
relational data and CSV data to fully unstructured data like textual data. Finally, it
should cope with the very diversified data access modalities sources offer, from low
level streaming access to high level data analytics.

To this extent, the data modelling abstraction we adopt to represent the data space
is fully decentralized, thereby bridging, on the one hand, existing dataspace models that
usually rely on a single mediated view [6] and, on the other hand, P2P approaches for
data sharing [8]. The dataspace is therefore a collection of heterogeneous data sources
that can be involved in the processes, both in-factory and out-factory. Those data are
either describing the manufactured products or the manufacturing processes and assets
(material, machine, enterprises, value networks and factory workers) [9]. Each data
source has its data access model that describes the kind of managed data, e.g.,
streaming data vs. static data, and the supported operators. As an example, sensed
parameters such as temperature in the oven, temperature in the packing station, levels
of the different ingredients, etc. are all streaming data needed in the dataspace of
MyMuffin that can be accessed only through simple windowing operators on the latest
values. On the other hand, supplier data can be recorded in a DBMS that offers a rich
access model both for On Line Transaction Process (OLTP) operations and On Line
Analytical Process (OLAP) operations.

Data representation relies on the graph modelling abstraction. This model is
usually adopted to represent information in rich contexts. It employs nodes and labelled
edges to represent real world entities, attribute values and relationships among entities.
Figure 3 shows a small portion of the MyMuffin data space that can be used in case of
overcooking. “Batches” is a data stream that reports the cooking status over time;
“Orders” is the set of records storing the back orders made by client online and the
corresponding QR-codes; “Recipes” is a semi-structured data set recording the recipes
of the different kinds of muffins; “Yellow pages” is a web-based data source about the
couriers and the related Web services. The oid’s in Figure 3, like oid101, are object
identifies and are used to collect together data referring to the same real-world entity. It
is worth noting that graph data can be serialized in a triple base where each triple has
the form (s,p,o), where s is the source, p is the property, and o is the object.

The main problem the interoperability platform must cope with when dealing with
data is data heterogeneity. Indeed, the various services gather data, information and
knowledge from sources distributed over different stakeholders and external sources,
e.g., the delivery agents and the Web. All these sources are independent, and we argue
that a-priori agreements among the distributed sources on data representation and
terminology is unlikely in large digital supply chains over several digital factories..

Data heterogeneity can concern different aspects: (1) different data sources can
represent the same domain using different data structures; (2) different data sources can
represent the same real-world entity through different data values; (3) different sources

N. Bicocchi et al. / Dealing with Data and Software Interoperability Issues in Digital Factories18

can provide conflicting data. The first issue is known as schema heterogeneity and is
usually dealt with through the introduction of mappings. Mappings are declarative
specifications describing the relationship between a target data instance and possibly
more than one source data instance. The second problem is called entity resolution
(a.k.a. record linkage or duplicate detection) and consists in identifying (or linking or
grouping) different records referring to the same real-world entity. Finally, conflicts
can arise because of incomplete data, erroneous data, and out-of-date data. Returning
incorrect data in a query result can be misleading and even harmful. This challenge is
usually addressed by means of data fusion techniques that are able to fuse records on
the same real-world entity into a single record and resolve possible conflicts from
different data sources.

 Figure 3. An excerpt of the MyMuffin data space.
For instance, if the user is interested in reconstructing the current status of back

orders, then it is necessary to fuse the data stored in the batches data source and the
data stored in orders data source. In this case, entity resolution is necessary because the
same muffin type of the same order is represented by different oid’s (e.g., oid101 and
oid80 or oid75 and oid70) and data fusion is necessary because, when the information
about the same muffin type in the same order are grouped together, there will be two
edge symbols, i.e., “#”, with different semantics, one representing the number of
ordered pieces and the other one the number of cooked pieces.

Traditional approaches that address data heterogeneity propose to first solve
schema heterogeneity by setting up a data integration application that offers a uniform
interface to the set of data sources. This requires the specification of schema mappings
that is a really time- and resource-consuming task entrusted to data curation specialists.
This solution has been recognized as a critical bottleneck in large scale deeply
heterogeneous and dynamic integration scenarios, as digital factories are. A novel
approach is the one where mapping creation and refinement are interactively driven by
the information access needs of service flows and the exclusive role of mappings is to

N. Bicocchi et al. / Dealing with Data and Software Interoperability Issues in Digital Factories 19

contribute to execute service compositions [10]. Hence, we start from a chain of
services together with their information needs expressed as inputs and outputs which
we attempt to satisfy in the dataspace. We may need to discover new mappings and
refine existing mappings induced by composition requirements, to expose the user to
the inputs and outputs thereby discovered for their feedback and possibly continued
adjustments. Therefore, the service composition induces a data space orchestration that
aims at aligning the data space to the specific service goals through the interactive
execution of three steps: mapping discovery and selection, service composition
simulation, feedback analysis. Mappings that are the outcome of this process can be
stored and reused when solving similar service composition tasks.

Essentially, the data flow indicates that from each QRCode returned by the
overcook service, (i) it should be derived the Web service to interact with the
delivery agent/courier, whereas (ii) from the type of the overcooked muffin it should be
derived the list of ingredients together with the required quantity as input to the dosing
machine.

Figure 4. Mapping discovery process.

Therefore, mapping discovery leads to two mappings whose targets are
(QRCode,call,?z) and (type,has_ingredient,?h), (?h,name,?x),
(?h,qty,num*?y). A plausible output to the mapping discovery for the second
mapping is shown in Figure 3. This mapping involves the “Recipes” data source, only,
and provides all the ingredients of the recipe of the type of the given overcooked
muffins. If some muffins of type type_1 are overcooked then ?k=type_1 and the
input to the dosing machines will be (yoghurt,75gr), (blueberry,30gr),
(egg,2), etc. Notice that the discovery of such a mapping most likely needs human
intervention because, given a muffin type, some alternatives are available to get to the
corresponding ingredients and the addition of the basic recipe ingredients is not so
obvious.

3. Related Work and Concluding Remarks

The composition of resource services, as an approach aimed at improving the
efficiency of service selection and utilization, is widely adopted at present in
manufacturing [11]. Supported by recent technologies such as service oriented
computing, the Internet of Things (IoT) and mobile platforms, the virtualization of

N. Bicocchi et al. / Dealing with Data and Software Interoperability Issues in Digital Factories20

manufacturing processes is rapidly expanding [12][13]. A variety of methods for
resource composition have recently been proposed.

IoT technology has been applied to the problem of service composition for
improving both resource selection and utilization [14]. Though the composition of
resource services is important, cross-organization is seldom considered in such an
environment. How a cross-organizational resource configuration impacts performance
is discussed in [15]. Quality of service (QoS)-aware service composition in cloud
manufacturing (CMfg) systems has been proposed. As an example, the system
proposed in [16] allows a free combination of multiple functionally-equivalent
elementary services into a synergistic elementary service group to perform each
subtask collectively, thereby improving the overall QoS.

Framework-based methods have been also used for the composition of resources.
In [14], a configurable information service platform is proposed for the development of
IoT-based applications, providing an information support base for both data integration
and intelligent interaction in the product lifecycle. Based on an abstract information
model, information encapsulating, composing, discomposing, transferring, tracing, and
interacting in Product Lifecycle Management (PLM) can be carried out. Combining
ontologies and representational state transfer (REST)-ful services, the platform
provides an information support base both for data integration and intelligent
interaction.

The SAPERE project [8] is a general coordination framework aimed at facilitating
the decentralized execution of self-organizing and self-adaptive services. It
conceptually models a service ecosystem as a virtual environment. The interactions
between services take place by applying a limited set of basic interaction laws, and
typically take into account the spatial and contextual relationships between services.

To the best of our knowledge, the proposed approach is different from the
alternative ones for the following reasons: (i) it pursues a global approach that starts
from the processes and arrives at data; (ii) it puts humans in-the-loop of PLM without
requiring heavy manual intervention; (iii) it relies on dynamic orchestration of services
and data to align them to the processes; (iv) it supports personalized paths towards
process goals.

Despite the encouraging approach, there are still several open research issues to be
addressed in the future to realize the proposed architecture such as: (i) the definition of
a way to describe goals related to the process; (ii) the definition of a way to
semantically describe the services in the system; (iii) the definition of a way to describe
the result of the service composition.

Acknowledgement

This work is partially founded by the EU H2020-RISE Project “FIRST: virtual Factory
Interoperation suppoRting buSiness innovaTion” (734599).

References

[1] N. Chungoora, R.I. Young, G. Gunendran, C. Palmer, Z. Usman, N.A. Anjum and K. Case, A
model-driven ontology approach for manufacturing system interoperability and knowledge
sharing, Computers in Industry, Vol. 64:4, 2013, pp. 392-401.

N. Bicocchi et al. / Dealing with Data and Software Interoperability Issues in Digital Factories 21

[2] L. Da Xu, W. He and S. Li, Internet of things in industries: A survey, IEEE Transactions on
industrial informatics, 10:4, 2014, pp. 2233-2243.

[3] L. Monostori, Cyber-physical production systems: Roots, expectations and R&D challenges.
Procedia CIRP, Vol. 17, 2014, pp. 9-13.

[4] J. Davis, T. Edgar, J. Porter, J. Bernaden and M. Sarli, Smart manufacturing, manufacturing
intelligence and demand-dynamic performance, Computers & Chemical Engineering, Vol. 47,
2012, pp. 145-156.

[5] Z. Bi, L. Da Xu and C. Wang, Internet of things for enterprise systems of modern manufacturing,
IEEE Transactions on industrial informatics, Vol. 10(2), 2014, pp. 1537-1546.

[6] A. Marrella, M. Mecella and S. Sardiña, Intelligent Process Adaptation in the SmartPM System,
ACM Transaction on intelligent systems, Vol. 8(2), 2017, doi:10.1145/2948071.

[7] G. Castelli, M. Mamei, A. Rosi and F. Zambonelli, Engineering pervasive service ecosystems:
The SAPERE approach, ACM Transactions on autonomous and adaptive systems, Vol. 10(1),
2015, doi: 10.1145/2700321.

[8] W. Penzo, S. Lodi, F. Mandreoli, R. Martoglia and S. Sassatelli, Semantic peer, here are the
neighbors you want!, EDBT '08 Proceedings of the 11th international conference on Extending
database technology: Advances in database technology, 2008, pp. 26-37.

[9] EFFRA Factories 4.0 and Beyond Recommendations for the work programme 18 - 19 - 20 of the
FoF PPP under Horizon 2020,
http://www.effra.eu/sites/default/files/factories40_beyond_v31_public.pdf

[10] F. Mandreoli, A Framework for User-Driven Mapping Discovery in Rich Spaces of
Heterogeneous Data, In: H. Panetto et al. (eds.) On the Move to Meaningful Internet Systems.
OTM 2017, Springer International Switzerland, 2017, pp. 399-417.

[11] H. Li, K.C.C. Chan, M. Liang and X. Luo, Composition of Resource-Service Chain for Cloud
Manufacturing, IEEE Transactions on industrial informatics, Vol. 12(1), 2016, pp. 211-219.

[12] H. Cai, L.D. Xu, B. Xu, C. Xie, S. Qin and L. Jiang, IoT-based configurable information service
platform for product lifecycle management, IEEE Transactions on industrial informatics, Vol.
10(2), 2014, pp. 1558-1567.

[13] F. Tao, Y. Zuo, L.D. Xu and L. Zhang, IoT-based intelligent perception and access of
manufacturing resource toward cloud manufacturing, IEEE Transactions on industrial informatics,
Vol. 10(2), 2014, pp. 1547-1557.

[14] W. He and L.D. Xu, Integration of distributed enterprise applications: A survey, IEEE
Transactions on industrial informatics, Vol. 10(1), 2014, pp. 35-42.

[15] T.L. Edgar, O. Chiotti and P.D. Villarreal, Software agent architecture for managing inter-
organizational collaborations, Journal of applied research and technology, Vol. 12(3), 2014, pp.
514-526.

[16] L. Bo and Z. Zhang, QoS-aware service composition for cloud manufacturing based on the
optimal construction of synergistic elementary service groups, International Journal of Advanced
Manufacturing Technology, Vol. 88.9-12, 2017, pp. 2757-2771.

N. Bicocchi et al. / Dealing with Data and Software Interoperability Issues in Digital Factories22

http://www.effra.eu/sites/default/files/factories40_beyond_v31_public.pdf

