
BigDedup: A Big Data Integration Toolkit
for Duplicate Detection in Industrial

Scenarios
Luca GAGLIARDELLI1, Song ZHU, Giovanni SIMONINI and Sonia

BERGAMASCHI

University of Modena and Reggio Emilia, Italy

Abstract. Duplicate detection aims to identify different records in data sources
that refer to the same real-world entity. It is a fundamental task for: item catalogs
fusion, customer databases integration, fraud detection, and more. In this work we
present BigDedup, a toolkit able to detect duplicate records on Big Data sources in
an efficient manner. BigDedup makes available the state-of-the-art duplicate
detection techniques on Apache Spark, a modern framework for distributed
computing in Big Data scenarios. It can be used in two different ways: (i) through
a simple graphic interface that permit to the user to process structured and
unstructured data in a fast and effective way; (ii) as a library that provides different
components that can be easily extended and customized. In the paper we show
how to use BigDedup and its usefulness through some industrial examples.

Keywords. Duplicate detection, Entity Resolution, Data Integration, Record
Linkage, Big Data

Introduction

Duplicate detection (also known as Entity Resolution) is the task of identifying if
different records pertain to the same real-world object. It is a fundamental and
expensive task for Data Integration process. With the advent of Industry 4.0 and the
massive employment of smart services, there is an increasing number of application
domains where duplicate detection is being required: e-commerce, for catalog fusion;
security, to detect frauds; customer databases integration and more. Moreover, Boston
Consulting [6] identifies as a fundamental pillar of Industry 4.0 the “Horizontal and
Vertical System Integration”, i.e., companies, supplier, customers, will be much more
cohesive, as a cross-company. Thus, the integration of all these figures will require an
intensive use of duplicate detection, in order to integrate all their data.

The main challenge of using duplicate detection in Industry 4.0 applications is
related to the huge amount of data to work with, i.e., Big Data. For instance, a product
catalog such as Amazon can contain millions of products, and to find the duplicated
ones involves billions of comparisons. To manage and analyze these Big Data the
distributed computing is the most promising approach [2, 3, 16], and different
distributed frameworks has been proposed in the last years [7, 8, 9]. One of the most

1 Corresponding Author, Mail: luca.gagliardelli@unimore.it.

Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0
M. Peruzzini et al. (Eds.)
© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-898-3-1015

1015

used framework is Apache Spark2, that is an Open Source, fast and general engine for
Big Data processing.

In this work we present BigDedup a toolkit that makes available the state-of-the-
art duplicate detection techniques on Apache Spark. It can be used through a simple
web application, or as a library to create more complex applications.

The rest of the paper is structured as follows: in the following Section 1 the
background and the related works are presented. Section 2 describes BigDedup
architecture. Then, Section 3 exhibits the results of the experiments on different
datasets. Finally, Section 4 concludes the paper.

1. Background and related works

This chapter outline the basic concepts of duplicate detection that are necessary to
understand the rest of the paper.

Figure 1. Example of schema-agnostic (meta-)blocking process. (a) A set of records R from an imaginary
data lake. (b) The set of blocks B derived applying schema-agnostic Token Blocking on R (i.e., each token is
a blocking key). (c) The blocking graph derived from the blocks of B, and the effect of the pruning algorithm,
dashed lines are the removed comparisons. For the sake of the example: each edge is weighted counting the
blocks that its adjacent profiles have in common and is retained if its weigh is above the average (more
complex weighting and pruning strategies are actually employed [4]).

2 http://spark.apache.org

L. Gagliardelli et al. / BigDedup: A Big Data Integration Toolkit1016

1.1. Blocking

The naïve solution of duplicate detection consists in comparing each record to all the
other records. This approach has a quadratic complexity, thus unmanageable in practice,
especially in a Big Data context. To overcome this issue, i.e., to reduce the number of
comparisons, blocking techniques [10] have been introduced. Blocking techniques
extract features from the records (blocking keys), and clusters together records that
have similar features. Then, the all-pair comparison is limited within each block. This
limits the number of comparisons, because two records being compared only if they co-
occur in the same block. An example of blocking is reported in Figure 1b.

To define good blocking keys, the schema of the data has to be known. However,
typically the schema alignment of different datasets is a heavy task, and usually
requires the intervention of domain experts. Thus, schema-agnostic blocking is
employed to avoid schema-alignment (they do not consider the schema). For example,
the token blocking, that is one of the most used one, uses only the values to generate the
blocking keys. This, will result in a higher recall (i.e. finds almost all the existing
duplicates), but with a very low precision (i.e. retains a high number of superfluous
comparison). To overcome this problem, and improve the precision, Simonini et al. [1]
propose a schema aware version of token blocking called Loose Schema-aware
Blocking (LSB). LSB generates clusters of similar attributes by applying LSH on their
values, also give them a weight in order to change their relevance in the meta-blocking
phase, then apply token blocking taking into account the generated clusters (i.e. if two
records have the same blocking key they are clustered together only if the blocking key
belongs to the same cluster of attributes). However, the use of the blocking is not
sufficient to limit the number of comparisons, more sophisticated techniques are
required.

1.2. Meta-blocking

Given that the blocking is not able to reduce enough the number of comparisons,
Papadakis at all. [4] have proposed the Meta-Blocking. Meta-Blocking aims to
restructure the block collection obtained with the blocking by removing the superfluous
comparisons, in order to obtain almost the same level of recall (the fraction of detected
duplicates correctly identified), but a higher precision (the average number of
comparisons executed to find each duplicate). Meta-Blocking generates a graph where
the records are the nodes, and two records are connected by an edge only if they co-
occur in at least one block. The edges are weighted using the idea that more blocks two
records share, more they are similar. Then, for each profile is calculated a threshold
(e.g. the average value of all its edges), and all the edges that has a weight lower than
the threshold are pruned. The Meta-Blocking produce as result a list of record pairs that
have to be resolved with a resolution process (e.g. resolution function, crowdsourcing,
etc.). A toy example of Meta-Blocking is presented in Figure 1c, as it is possible to see
the superfluous edges (r1-r2, r1-r3, r2-r3, r2-r4) are pruned, and only the relevant ones
are retained (r1-r4, r2-r3).

1.3. Entity Resolution tools

There are other data deduplication tools, among which the most similar to BigDedup is
JedAI [14]. JedAI exploits the meta-blocking [4] to perform the Entity Resolution as

L. Gagliardelli et al. / BigDedup: A Big Data Integration Toolkit 1017

BigDedup. However, JedAI does not integrate the BLAST method [1] that is the state-
of-the-art one for the Entity Resolution. A full comparison between BLAST and the
standard meta-blocking can be found in [1]. Most importantly, BigDedup is developed
for Apache Spark and can manage big datasets using the distributed computing, JedAI
is developed for Java and can be executed only on a single machine, which is limiting:
to manage high quantity of data can be problematic.

2. BigDedup

BigDedup is divided in two separated components: the core that is organized in
modules, each performing a specific task, devised to be parallelizable on Apache
Spark; the GUI that allow to manage the core operations, and analyze the results
through a powerful multi-device web interface.

Figure 2. BigDedup architecture.

L. Gagliardelli et al. / BigDedup: A Big Data Integration Toolkit1018

2.1. Core

The core is composed by different modules that are combined together in order to
perform the Entity Resolution process, as outlined in Figure 2. The core of BigDedup is
available as Scala library from our repository3.

BigDedup can ingest different kind of data, structured (databases) and
unstructured (CSV, JSON, RDF, etc.). The data are loaded into RDDs [7] that can be
processed with Apache Spark. It supports different blocking types, implementing the
schema-agnostic token blocking [10], and the loose-schema aware blocking [1].
Moreover, in case of loose-schema aware blocking the user can improve the
autogenerated attribute clusters modifying them.

The meta-blocking module let to restructure the blocks collection, in order to
increase the precision. It implements all the meta-blocking methods described in [1, 4].
Also, we developed a specific strategy to perform the meta-blocking on Spark that is
inspired to the broadcast join [11], that allows to not materialize the whole blocking
graph, but only a portion of it is materialized in parallel. This will result in a faster and
less memory expensive algorithm, that let to process big datasets in a fast and efficient
manner. Meta-blocking produces as result a list of record pairs that are candidates to be
true matching. These pairs have to be validated through an Entity Resolution process, a
user defined function can be used, or other systems such as Magellan [12].

Figure 3. BigDedup GUI.

3 https://github.com/Gaglia88/sparker

L. Gagliardelli et al. / BigDedup: A Big Data Integration Toolkit 1019

2.2. GUI

The GUI allows to manage the core operations thought a simple web interface (Figure
3). The main page of the GUI shows the status of the server (CPU and memory usage)
and the list of running tasks. Also, it is possible to: configure the Spark settings
(memory usage, level of parallelism, etc.); manage the datasets; manage the
notifications (the application can send Telegram 4 notifications when a task is
completed or if there are errors in the executions); launch new tasks; monitor the
running tasks, analyze the results, and compare the results of multiple tasks.

The task analyzer resumes the main results in four charts that shows the recall,
precision, F1 score and execution time for each meta-blocking method employed in the
task (Figure 4a). Also, it permits to analyze in detail all the steps, for example to see
how many blocks were generated, or the execution time of a certain step, and so on. If
the task performed the loose schema-aware token blocking it is possible to see the
generated cluster of attributes (Figure 4b). For each cluster are showed the contained
attributes, highlighted in different colors depending from which dataset they belong.
Also, the score calculated for each cluster (i.e. the entropy) is showed. All the attributes
that was not clustered together, are put in a blob cluster. The user can change the
clusters moving the attributes from a cluster to another, or creating a new one, and
restart the task in order to improve the results. It is also possible to explore the records
identified as duplicate by the system (Figure 4c).

Figure 4. (a) the task analysis presents a summary of the results throught four charts (precision, recall, F1
score, execution time), also let to see the detailed information about all steps; (b) if the loose schema-aware
token blocking is used, it is possibile to see and edit the generated attribute clusters; (c) it is possibile to
explore the identified as duplicate records.

4 https://telegram.org

L. Gagliardelli et al. / BigDedup: A Big Data Integration Toolkit1020

3. Experiments

We tested BigDedup on three real-world datasets, measuring it performances in term of
recall, precision and execution time. In these experiments are used both schema-
agnostic meta-blocking and loose-schema aware meta-blocking, in order to compare
them. The recall measures the fraction of existing duplicates that are discovered, while
the precision measures the number of executed comparison per duplicate.

The datasets [12, 13, 15, 19] used for the tests contain different products collected
from different data sources, and all of them have a ground truth that provides the
existing duplicates. Abt-Buy matches products from Abt.com and Buy.com; Google-
Amazon matches products from GoogleProducts and Amazon.com. Walmart-Amazon
matches products from Walmart.com and Amazon.com. The datasets charachteristics
are described in Table 1.

Since these datasets have a size that do not requires the use of a cluster, all the
tests were performed on a single machine with 16 Gb of RAM and an i7-5500 CPU,
using Apache Spark 2.0.2.

Table 1. The charachteristics of the datasets employed in the experiments. The first column indicats the
number of records; the second the number of attributes, and the last the number of existing duplicates.

 #r1 - #r2 #A1 - #A2 #D
Abt-Buy 1.1k – 1.1k 3 – 3 1.1k
Google-Amazon 1.4k – 3.0k 4 – 4 1.1k
Walmart-Amazon 2.6k – 22k 16 – 21 1.2k

Figure 5 presents the results in term of recall and precision of both schema-

agnostic and loose-schema aware meta-blocking (i.e. meta-blocking applied on blocks
generated with loose-schema aware blocking). The use of loose-schema aware blocking
improves the precision, but achieves a lower recall, w.r.t the schema-agnostic
blocking. On Abt-Buy and Walmart-Amazon the recall of both meta-blocking it is
almost the same (Figure 5a-b), while on Google-Amazon the schema-agnostic one
achieves a result higher (Figure 5c). In term of precision the schema-aware meta-
blocking always outperforms the other, obtaining a precision from (Figure 5d) to

 (Figure 5f) times higher.

Figure 5. Recall and precision achieved by considered methods on all datasets.

In Figure 6 are showed the execution times obtained on all the datasets from both

meta-blocking techniques, and from a resolution function that employs the Jaccard

L. Gagliardelli et al. / BigDedup: A Big Data Integration Toolkit 1021

Similarity5 to compare the meta-blocking output pairs. The schema-agnostic process is
always faster than loose-schema aware one, this because the latter has to extract the
loose-schema information. Despite that, considering the global execution time (meta-
blocking + entity resolution) the loose-schema meta-blocking will result faster than the
other (Figure 6b-c), the only exception is Abt-Buy (Figure 6a). That happens because
the loose-schema meta-blocking produces less pairs for the entity resolution function,
so the extra-time required during the meta-blocking is rewarded in the entity resolution
step. On Abt-Buy the execution times are similar because it is a very small dataset, and
both methods produce a similar number of pairs.

Figure 6. Execution times of considered methods on all datasets. In green is showed the whole meta-
blocking time, and in orange the time requested by the entity resolution function.

4. Conclusion

In this paper we presented BigDedup, a toolkit for Apache Spark that implements the
state-of-the-art duplicate detection techniques, able to work efficiently in Big Data
scenarios, fulfilling the needs of Industry 4.0 that produces a huge amount of data. It
can exploit both schema-agnostic and schema-aware (meta-)blocking techniques, that
are able to automatically align the schema of heterogeneous data sources. Finally, we
show BigDedup performances testing it on several real-world datasets, showing the
differences in term of recall, precision and execution time of the different
(meta-)blocking techniques.

As future work, we are planning to extend the framework to support other
applications, such as: keyword search [20] in large corpus of documents, and web
pages tagging systems [18].

References

[1] G. Simonini, S. Bergamaschi, and H.V. Jagadish, BLAST: a loosely schema-aware meta-blocking
approach for entity resolution, Proceedings of the VLDB Endowment, 9(12), 2016, pp. 1173-1184.

[2] S. Bergamaschi, L. Gagliardelli, G. Simonini and S. Zhu, BigBench workload executed by using
Apache Flink, Procedia Manufacturing, Vol. 11, 2017, pp. 695-702.

[3] S. Bergamaschi, D. Beneventano, F. Mandreoli, R. Martoglia, F. Guerra and M. Orsini, From Data
Integration to Big Data Integration. In S. Flesca et al. (eds.) A Comprehensive Guide Through the
Italian Database Research Over the Last 25 Years, Springer International Publishing, 2018, pp. 43-59.

5 More compex functions might be employed, such as CSA [17].

L. Gagliardelli et al. / BigDedup: A Big Data Integration Toolkit1022

[4] G. Papadakis, G. Koutrika, T. Palpanas and W. Nejdl, Meta-blocking: Taking entity resolution to the
next level, IEEE Transactions on Knowledge and Data Engineering, Vol. 26(8), 2014, pp. 1946-1960.

[5] S. Das, A. Doan, P.S.G.C.C. Gokhale and P. Konda, The Magellan data repository,
https://sites.google.com/site/anhaidgroup/projects/data.

[6] M. Rüßmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel and M Harnisch, Industry 4.0:
The future of productivity and growth in manufacturing industries, Boston Consulting Group, 2015.

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley and I. Stoica, Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing, In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation 2012, USENIX Association,
pp. 2-2.

[8] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony and R.Murthy, Hive: a warehousing
solution over a map-reduce framework, Proceedings of the VLDB Endowment, 2009, 2(2), pp. 1626-
1629.

[9] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi and K.Tzoumas, Apache flink: Stream and
batch processing in a single engine, Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, Vol. 36(4), 2015, pp. 28-38.

[10] P. Christen, A survey of indexing techniques for scalable record linkage and deduplication, IEEE
transactions on knowledge and data engineering, Vol. 24(9), 2012, pp. 1537-1555.

[11] S. Blanas, J.M. Patel, V. Ercegovac, J. Rao, E.J. Shekita and Y. Tian, A comparison of join algorithms
for log processing in mapreduce, Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, ACM, 2010, June, pp. 975-986.

[12] P. Konda, S. Das, P.G.C. Suganthan, A. Doan, A. Ardalan, J.R. Ballard and S. Prasad, Magellan:
Toward building entity matching management systems, Proceedings of the VLDB Endowment, Vol.
9(12), 2016, pp. 1197-1208.

[13] H. Köpcke, A. Thor and E. Rahm, Evaluation of entity resolution approaches on real-world match
problems, Proceedings of the VLDB Endowment, Vol. 3(1-2), 2010, pp. 484-493.

[14] G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopoulos, T. Palpanas and M. Koubarakis, JedAI:
The Force behind Entity Resolution, European Semantic Web Conference, Springer, Cham, 2017, pp.
161-166.

[15] S. Bergamaschi, D. Ferrari, F. Guerra, G. Simonini and Y. Velegrakis, Providing insight into data
source topics, Journal on Data Semantics, Vol. 5(4), 2016, pp. 211-228.

[16] G. Simonini and S. Zhu, Big data exploration with faceted browsing, High Performance Computing &
Simulation (HPCS), 2015 International Conference on, IEEE, 2015, pp. 541-544.

[17] F. Benedetti, D. Beneventano, S. Bergamaschi and G. Simonini, Computing inter-document similarity
with Context Semantic Analysis, Information Systems, 2018, https://doi.org/10.1016/j.is.2018.02.009.

[18] F. Guerra, G. Simonini and M. Vincini, Supporting image search with tag clouds: a preliminary
approach, Advances in Multimedia, 2015, http://dx.doi.org/10.1155/2015/439020.

[19] G. Simonini, G. Papadakis, T. Palpanas and S. Bergamaschi, Schema-agnostic Progressive Entity
Resolution, IEEE International Conference on Data Engineering, 2018, pp. 53-64.

[20] S. Bergamaschi, F. Guerra and G. Simonini, Keyword search over relational databases: Issues,
approaches and open challenges. In: N. Ferro (ed.) Bridging Between Information Retrieval and
Databases, Springer, Berlin, Heidelberg, 2014, pp. 54-73.

L. Gagliardelli et al. / BigDedup: A Big Data Integration Toolkit 1023

