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Abstract. Somatic single nucleotide variants (SNVs) are genomic events with 

increasing implications in cancer treatment. The clinical standard for SNVs detection 
is whole genome/exome sequencing (WGS/WES) in matched tumor-normal 

samples. Yet, this is a very costly approach both economically and biologically and 

very often only tumor samples are sequenced. On the other hand, RNA sequencing 
(RNA-Seq) is the most popular technology to study gene expression, and has also 

the potential for a cost-effective identification of SNVs as an alternative to tumor-

only WES. Here we present a method for the identification of SNVs in tumor-only 
RNA-Seq data putting a special focus on a small panel of clinically relevant SNVs. 

For evaluation purposes, we analyzed matched tumor-normal WES and tumor-only 

RNA-Seq data from 14 cancer patients. We compared SNVs detected in i) RNA-Seq 
by our method, ii) WES tumor-only by Mutect2 and iii) WES matched tumor-normal 

by Mutect2. We did a detailed evaluation for a reduced panel of clinically relevant 

SNVs and reliably identified in RNA-Seq data a subset of mutations for which we 
had pathological annotation. Hence, RNA-Seq rises as a cost-effective option to 

detect in parallel gene expression as well as a small panel of clinically relevant SNVs 

in research. 
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1. Introduction 

Somatic single nucleotide variants (SNVs) are genomic events known to drive cancer. 

Whole genome and exome sequencing (WGS, WES) in matched tumor-normal samples 

are the clinical standard for detecting somatic SNVs. There are many tools for identifying 

SNVs on WGS or WES data, thoroughly compared in different contexts [1-3]. According 

to these studies, two tools outperform the rest: Mutect [4] and Varscan2 [5]. The first 

performs better at identifying SNVs with low allele frequencies, whereas the latter 

detects the highest number of SNVs and outperforms any tool at positions with high 

coverage. On the other hand, RNA sequencing (RNA-Seq) has become the most popular 

technology -after replacing microarrays- to study gene expression. Unlike microarrays, 

RNA-Seq can easily be used to detect alternative splicing, RNA editing, fusion genes, 

other RNA species, and, potentially, SNVs. Calling somatic SNVs in RNA-Seq data has 

been done in some studies by applying tools specific for WES/WGS data [6-8]. Besides 
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obvious false negatives produced in regions with low or no expression, these studies 

reported false positive SNV calls in RNA-Seq data mainly due to: PCR cycle bias, strand 

bias, RNA editing and difficulty to align the transcriptome to the reference genome due 

to splicing. Sheng and colleagues tried to address some of these issues both on DNA and 

RNA-Seq [9]. An added problem is the fact that clinical samples are usually limited to 

tumor-only profiling. Detection of somatic SNVs in WES tumor-only samples is 

challenging and has been addressed with machine learning approaches [10] or the use of 

whitelists and blacklists as in Mutect [4]. However, the same has not yet been attempted 

for RNA-Seq data. All in all, its cheaper cost compared to WES/WGS together with all 

its possible applications makes RNA-Seq a technology with high interest for clinical use 

(e.g. parallel detection of SNVs and functional activation of genes). It seems worthwhile 

developing a method to call SNVs in RNA-Seq data optimized for a panel of well-known 

SNVs.In this study we present a method to call SNVs in RNA-Seq tumor-only samples. 

We assess its performance putting special focus on optimizing the method for a panel of 

known SNVs with high clinical interest. We compare our method’s performance on a 

matched dataset comprising RNA-Seq and WES data. We chose Mutect2 to detect SNVs 

in WES data.We compare the SNVs detected in RNA-Seq data by our method to tumor-

only and tumor-normal results by Mutect2.  

2. Materials and Methods  

2.1. Databases 

The panel of known SNVs with high clinical interest was based on the Clinical 

Interpretation of Variants in Cancer (CIViC, version from 01/06/2017) [11] and Cancer 

Genome Interpreter (CGI, last updated 02/08/2017) [12]. In both cases, we filtered for 

SNVs predictive of drug response. Genomic coordinates were transformed from hg19 to 

hg38 built using the rtracklayer R package. Both databases were merged by aggregating 

duplicate entries. The panel of actionable variants contains information on 442 variants 

in 92 genes. 

2.2. Collection of Patient Samples 

Tissue samples were collected by the surgery departments of the University Medical 

Center Göttingen. The collected tissues are from seven metastatic brain and seven 

metastatic liver tumours with origin from either colorectal or breast cancer. Fresh frozen 

tissue samples for WES and RNA-Seq were separated. From these 14 patients we 

collected EDTA-blood for WES as well. EDTA-blood samples served as control samples 

to differentiate between germline and somatic mutations. In total 42 samples were 

sequenced, 3 samples per patient. The study is approved by the Ethics Committee of the 

University Medical Centre Göttingen, application number 21/3/11 and 14/10/05. 

2.3. Data Preprocessing and Analysis 

WES and RNA-Seq reads were quality assessed using fastqc. All WES brain samples 

showed high duplication levels and a drop in quality at the end of the reads due to high 

levels of contamination with nextera adapters. Hence, TrimGalore-0.4.3 was applied to 

all brain samples. Between 11% and 38.4% of base pairs were trimmed. WES paired-

end reads were aligned against the reference genome of Homo sapiens version GRCh38 

with bowtie2 (version 2.2.3). Samtools was used to create bam files, and Picard (version 
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2.0.1) to mark duplicates. Then, GATK (v3.8.0) best practices were followed to perform 

read realignment (IndelRealigner) and base recalibration (BaseRecalibrator). RNA-Seq 

single-end reads were aligned against the reference genome of Homo sapiens Ensembl 

Version GRCh38.91 with the splice-aware aligner STAR (v2.5.2b). Picard (version 

2.0.1) was used to remove duplicates. We used Mutect2 (GATK v3.8.0, beta version) to 

detect somatic variants in WES data using matched tumor-normal samples (referred to 

as “clinical standard” in the text) as well as only tumor samples (“tumor-only” mode). 

Cosmic (version 83, Coding and Non Coding vcf files) and dbSNP (version 138) were 

provided as input to Mutect2 to adjust the threshold for evidence of a variant in the 

normal sample. To confirm germline mutations detected by tumor-only samples, GATK 

Haplotypecaller (v3.8.0) with dbSNP (version 138) was used. 

3. Results 

3.1. Detection of SNVs in RNA-Seq Data 

We implemented a variation of pileuping nucleotide bases at each position in the 

transcriptome, using mpileup from samtools. In case of a transcriptome-wide analysis, 

mpileup of all base positions in the RNA-Seq data is performed. Afterwards, the 

distribution of bases in each position is annotated with supplemental database 

information (CIVIC, ClinVAR, Cosmic). In case the -panelmode flag is selected, mpilup 

is called only for the 442 curated SNVs. A minimum of 3 reads or 10% of the reads 

supporting the alternative variant are used as default thresholds. The output comprises 

the distribution of bases at each position, the decision whether the position contains an 

SNV, and clinical annotations from CIViC and CGI.  

3.2. Comparison of WES and RNA-Seq Data in Detecting SNVs 

We generated WES matched tumor-normal and RNA-Seq tumor-only data from 14 

cancer patients. We applied a standard pipeline to detect somatic SNVs in WES matched 

tumor-normal samples, referred to as clinical standard. We also applied a tumor-only 

mode to WES tumor samples, referred to as tumor-only. Finally, we applied our method 

to detect SNVs in RNA-Seq tumor samples. SNVs detection was focused on 442 cancer-

specific variants with clinical interest. As shown in Figure 1A we found 109 SNVs in all 

samples by the three methods: 10 in the gold standard, 104 in tumor-only and 73 in the 

RNA-Seq (average of 0.7, 7.4 and 5.2 SNVs/sample, respectively). The 10 SNVs 

detected by the clinical standard were also detected in WES tumor-only and RNA-Seq. 

We found a higher overlap between WES tumor-only and RNA-Seq (68 SNVs) than 

between the two methods on WES (10 SNVs). This finding is explained by the fact that 

our panel includes germline mutations and polymorphisms; the clinical standard is 

optimized to reliably detect mutations only present in the tumor sample by filtering out 

any mutation present in the normal sample. Accordingly, the clinical standard only 

detected SNVs known to be somatic. Nonetheless, all somatic SNVs were also detected 

by tumor-only and RNA-Seq (Figure 1B). 

The variants uniquely detected by WES tumor-only (36 SNVs) could be explained 

in the majority of the cases due to low expression in the RNA-Seq data. The only 

exception presenting high expression was the MGMT promoter SNP rs16906252. Yet, 

this SNP is known to be associated with low MGMT expression, leading to allele specific 

expression [13]. On the other hand, only 5 SNVs were exclusively detected by RNA-
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Seq. Two of them - TPMT Y240C and TPMT A154T - are known to be an haplotype of 

the TPMT enzyme (TPMT*3A) [14] and were indeed found in the same patient (BM4). 

These haplotype was not confirmed by WES tumor-only due to high duplication levels, 

which did not pass Mutect2 filters. The other three mutations (ETS2 mutation in patient 

BM1, NQO1 in patient BM7 and XRCC1 mutation in patient LM3) were not found in 

WES tumor-only also due to the same reason. As a matter of fact, these 5 germline 

polymorphisms detected exclusively in RNA-Seq data could be confirmed by a germline 

SNV caller (Haplotypecaller) in normal samples. Last but not least, 7 out of the 8 

pathologically validated mutations in BRAF, KRAS, NRAS and PIK3CA were 

consistently detected by the three methods (Figure 1).  PIK3CA E545K mutation in 

patient LM5 was not detected by any method.  

 

 
Figure 1: A) Venn diagram depicting the number of SNVs identified by each method across all samples (T+N: 
Mutect2, Tumor+Normal samples, T: Mutect2, Tumor samples, R: Wileup RNA-Seq). B) Heatmap 

visualization of 29 unique SNVs which were found by at least one of the methods in any of the 14 patients. 

Wild Type (WT) mutations are shown light green and purple, mutations found by the methods are in green and 
purple, mutations agreeing with the pathological annotation (validated) are marked in dark green and purple. 

The details of the pathological mutations are described in the annotation bars at the bottom of the figure. The 

origin of the mutation is annotated in the bar at the right sight of the heatmap.  

4. Discussion 

We showed a high overlap between RNA-Seq and tumor-only WES. Previous studies 

reported high numbers of false positives in RNA-Seq data, however, by using a whitelist 

of well-defined SNVs we avoid this problem. In this setting, detecting SNVs in RNA-

Seq data is a comparable approach to WES tumor-only; yet, in RNA-Seq it is regarded 

as an extra analysis which can be quickly performed (average of 11-15 min/sample) for 

no extra cost. More important, RNA-Seq appears to be a reliable approach for detecting 

the selected panel of clinically relevant SNVs, as confirmed by the pathologically 

validated data (for somatic variants) and by the analysis of normal WES samples (for 

germline variants). Of course, the user has to accept false negatives in non expressed 
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genes, but that is inherent to RNA-Seq data. For future implementations, it would be 

important to consider RNA editing processes as well as including indels in the analysis. 

5. Conclusion 

We showed that RNA-Seq is a cost-effective option to detect a curated list of SNV in 

parallel to gene expression. Although WES will remain to be the clinical standard, the 

method presented here can become an alternative when WES is not available. 
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