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Abstract. Commercial activity trackers are set to become an essential tool in health 
research, due to increasing availability in the general population. The corresponding 
vast amounts of mostly unlabeled data pose a challenge to statistical modeling 
approaches. To investigate the feasibility of deep learning approaches for 
unsupervised learning with such data, we examine weekly usage patterns of Fitbit 
activity trackers with deep Boltzmann machines (DBMs). This method is 
particularly suitable for modeling complex joint distributions via latent variables. 
We also chose this specific procedure because it is a generative approach, i.e., 
artificial samples can be generated to explore the learned structure. We describe how 
the data can be preprocessed to be compatible with binary DBMs. The results reveal 
two distinct usage patterns in which one group frequently uses trackers on Mondays 
and Tuesdays, whereas the other uses trackers during the entire week. This 
exemplary result shows that DBMs are feasible and can be useful for modeling 
activity tracker data. 
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1. Introduction 

Wearable devices, more specifically activity trackers, are attracting considerable interest 
due to their ability to measure physical activity continuously. The identification of 
patterns in the corresponding vast amounts of data generated in these settings poses a 
challenge to conventional linear modeling approaches. 

Few researchers have addressed the problem of modeling the joint distribution of 
large quantities of activity tracker data using deep learning techniques. This paper seeks 
to address this issue by employing a deep Boltzmann machine (DBM) which has been 
shown to be a promising method in many applications like single-cell genomics, object 
recognition, and information retrieval [1–3]. Additionally, it provides a generative model, 
i.e., artificial samples can be generated from a trained model for exploring the structure 
learned by the approach. 

Our analysis aims to develop methods that can detect structures in large unlabeled 
datasets and broaden current knowledge of weekly activity tracker usage patterns. 
Furthermore, the results could subsequently provide information on associations of latent 
activity patterns with health outcomes. 
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Due to the complex structure of activity tracker data, the modeling task is often 
subdivided. Bai et al., for example, employed a two-stage model in which the presence 
of activity and the activity intensity given any activity at all are modeled separately using 
linear models [4]. In [5], the authors utilized random forests to model physical activity 
but were only able to train their model on data from a strictly controlled setting, which 
is not directly comparable to activity data from the use of activity trackers by the general 
population. In contrast to the approach considered in our study, [6] use supervised 
learning methods in a controlled surrounding, i.e., a gold standard is needed in the 
learning procedure. 

2. Methods 

The data for this study was obtained from openhumans.org where users of activity 
trackers can donate their activity records for the purpose of scientific studies. We had 
access to publicly shared Fitbit data from 29 individuals and extracted their daily step 
counts (median number of steps = 7181). Since our goal was to explore weekly usage 
patterns data was prepared such that each week represents one sample. Accordingly, step 
counts were available for 3577 weeks (median number of weeks per individual = 107). 
Hence, we define  to be the recorded number of steps in a given week  at day ,  
corresponding to Monday, and so on. 

After deleting all weeks in which no data was recorded, we dichotomized the step 
counts for activity/inactivity of the tracker. This approach was adapted from [4] using an 
indicator function: 
 

       (1) 

 
The following subsections give a brief overview of deep Boltzmann machines. 

2.1. Deep Boltzmann Machines (DBMs) 

In order to identify the usage patterns mentioned above, we employ deep Boltzmann 
machines. This method has the potential to outperform previous approaches for wearable 
device data because it can learn a hierarchy of abstract features due to its deep 
architecture [7]. In addition, DBMs can process vast quantities of unlabeled data which 
is inevitable in settings where data is obtained from fitness trackers under real-life 
conditions. 

In our approach, we consider a two-layer Boltzmann machine where we denote the 
visible layer as  and use ,  for the first and second hidden layer, respectively. 
Furthermore, we restrict ourselves to a DBM with no within layer connections. The DBM 
enables modeling of the joint distribution of a large number of Bernoulli variables. In 
this context, these variables represent whether an individual made use of an activity 
tracker or not at a specific day. Broadly speaking, DBMs consist of stacked sets of visible 
and hidden nodes in which each layer captures complex, higher-order correlations 
between the activities of hidden features in the layer below [2]. 

Following the definitions and outline of [2] we define the energy of the state 
 as: 
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     (2) 

 
where  are the model parameters, representing the symmetric interactions 
between layers. In energy-based models, low energy corresponds to high probabilities 
whereas high energy represents a low probability. 

Next, we define the probability of the visible vector : 
 

          (3) 

 
Where  denotes the intractable normalizing constant, i.e., the partition function. 

Furthermore, the conditional distributions over the visible and the two sets of hidden 
units are given by logistic functions :  
 

          (4) 
 

            (5) 
 

            (6) 
 

2.2. Training Procedure 

To carry out stochastic gradient ascent on the log-likelihood we make use of the 
following parameter update rule for the simplified case with one hidden layer : 
 

     (7) 
 

Here,  is referred to as the data-dependent expectation while we denote 

 as the data-independent expectation. Also, the learning rate  determines the 

influence each individual training sample has on the updates of . To train the model's 
expectations we used stochastic approximation procedures which are outlined in [2].  
The data-dependent expectation was approximated using variational learning, where we 
can characterize the true posterior distribution by a fully factorized distribution [8]. 
Besides, the data-independent expectation was approximated using Gibbs sampling [8]. 
By stacking multiple restricted Boltzmann machines (RBMs), where only two layers are 
considered simultaneously, the resulting DBM can learn internal representations which 
enable us to identify complex statistical structures within the hidden layers [8]. To this 
end, we adopted the greedy layerwise pre-training which is detailed in [2]. In this 
framework [2] introduce modifications to the first and the last RBM of the stack so that 
the parameters  are initialized to reasonable values. On this basis, the 
parameters can be improved during the approximate likelihood learning of the entire 
DBM [7]. In our analyses, we set the number of visible nodes  and the number of nodes 
in the first hidden layer  to seven in order to represent each weekday. We use one node 
in the terminal hidden layer  since we aimed to detect two groups of usage patterns. 
Hence, an active node in the terminal hidden layer represents one group while an inactive 
node represents another pattern. Furthermore, we set the learning rate  to  during 
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pre-training and increased it to  for the training of the entire DBM. The number of 
epochs was held constant at 40 for pre-training as well as for training the entire DBM. 
Data analysis was performed using Julia Version 0.6.2 and the Julia package 
BoltzmannMachines.jl (https://github.com/binderh/BoltzmannMachines.jl.git). 

3. Results 

After having obtained estimates of the parameters , we used the DBM to generate new 
observations for the visible layer to explore the learned structure. Specifically, we used 
the DBM to compute the deterministic potential for the activation of the hidden nodes 

 given that the nodes in the terminal layer  were active/inactive. We then propagated 
the deterministic potential through the network to obtain the visible potential. 
Subsequently, we generated  uniformly distributed random numbers between  
and  and assigned the value  if the visible potential was higher than the random 
number. Next, we used the generated data to plot the learned patterns in a heat map 
displayed in Figure 1. From the graph, we can distinguish two clear usage patterns. The 
upper pattern denoted as "on" shows that there is the tendency to use activity trackers at 
the beginning of the week on Monday and Tuesday and slightly increased usage on the 
weekend, while the lower pattern indicates a high usage throughout the whole week. A 
robustness check of the results was done by dropping each case individually and 
calculating the visible potential again, resulting in similar patterns. 

 
Figure 1. Heatmap of weekly activity tracker usage generated by the DBM. The upper pattern “on” shows a 
group that frequently uses activity trackers on Mondays and Tuesdays. The lower row indicates a group with 

regular usage throughout the whole week. 

4. Discussion 

One limitation is our sample size of 29 individuals. Being able to acquire more data 
and validate the model is an essential next step. Besides, integrating other measurements 
like heart rate and sleeping behavior could improve our model substantially. Based on 
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this, we could adapt the structure of our DBM to find even more usage patterns or model 
activity intensity. Another downside regarding our methodology is the dichotomization 
of step counts which gives away valuable information in the data. This can be addressed 
by using different cutoffs to incorporate the number of steps per day, but other, direct 
modeling approaches may be more useful. 
Nevertheless, we believe our work could be the basis for future studies which take the 
continuous measurements from activity trackers into account. To further our research, 
we plan to use the partitioning approach presented in [7]. Doing this, we could potentially 
combine a binary RBM, to model the presence/absence of tracker usage, with a Gaussian 
RBM, for learning the activity intensity patterns and for modeling the temporal structure 
over a longer time period. 

5. Conclusion 

We have presented a deep learning approach, more precisely a deep Boltzmann machine, 
to model the complex joint distribution of activity tracker data and showed that it can be 
used successfully to extract meaningful activity tracker usage patterns. Most importantly, 
we were able to reveal two distinct weekly usage patterns in which one group mostly 
uses trackers on Mondays and Tuesdays, whereas the other uses trackers during the entire 
week. Understanding these usage patterns, which might e.g. correspond to individuals 
with planned activity vs. individuals with continuous self-optimization, could be useful 
for subsequent analyses. 
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