
Integration of MultiAgent Systems with
Resource-Oriented Architecture for

Management of IoT- bjects

Pablo PICO-VALENCIA a and Juan A. HOLGADO-TERRIZA b,1

a Pontifical Catholic University of Ecuador, Esmeraldas, Ecuador
b Software Engineering Department, University of Granada, Spain

Abstract. Recently, scientists have shown a special interest in the integration of
agent-oriented technologies with the Internet of Things (IoT) in order to manage
smarter IoT-objects and their resources. This paper proposes an agent architec-
ture of Multiagent Systems based on Resource-Oriented Architecture (MAS-ROA),
where the behavior of each agent is driven by a specific control workflow. This
workflow enables agents to be able to perform sensing and control actions over IoT-
objects by means of collaborative processes. In this way, IoT-objects managed by
MAS-ROA agents can behave proactively, collaboratively, adaptively and smartly.
In order to validate the proposal, an IoT ecosystem composed of many “things”
(IoT-objects) is modeled and managed by agents based on MAS-ROA. The Mul-
tiagent System based on MAS-ROA was then contrasted with an implementation
based on Service-Oriented Architecture (MAS-SOA) addressed by Devices Profile
for Web Services (DPWS) to get insight about the differences in capabilities and
performance.

Keywords. Internet of Agents, Agentification, Internet of Things, Service-Oriented
Architecture, Resource-Oriented Architecture, Agent-based Services

1. Introduction

Recently, some theoretical and practical approaches have been proposed to create smart
objects for Internet of Things (IoT). Two of the most relevant ones are related to the
agentification of the IoT [1] and the Internet of Agents (IoA) [2] approaches. Both ap-
proaches propose the integration of agents with IoT technologies as a novel paradigm
to control automatically, autonomously and smartly the real world through dynamic net-
work of heterogeneous devices interconnected via Internet [3]. Hence, traditional passive
IoT-objects can become active and consequently, the new generation of IoT-objects will
require minimal or no user intervention to adapt their behavior to the changes that occur
in their environments [4].

The IoA approach can be seen as a smart agent interaction, defined in an upper level
that governs the IoT resources [5]. In parallel to this novel approach, two perspectives

1Corresponding Author: Juan A. Holgado-Terriza, University of Granada, Daniel Saucedo Aranda Street
18015 Granada (Spain); E-mail: jholgado@ugr.es

O

Intelligent Environments 2018
I. Chatzigiannakis et al. (Eds.)
© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-874-7-567

567



have been defined to realize the agentification of the IoT. The first one consists of em-
bedding a software agent within the architecture of each IoT-object such as IoT-a [6],
agent of thing [7], and smart object [8] models. On the other hand, the second approach
suggests the design of Multi-Agent Systems (MASs) that control actively IoT-objects
[9].

Regardless of the perspective used to agentify the IoT, the target is focused on con-
trolling the IoT-objects smartly. For this purpose, a dynamic component capable of mod-
ifying the agent behavior autonomously according to the changes that occur in the op-
erating environment is included [2]. To facilitate this adaptation process, several mech-
anisms have been merged within MASs to facilitate the design of their functionalities
using ecosystems of services based on Service Oriented Architecture (SOA) or Resource
Oriented Architecture (ROA) [10]. As a result, several approaches of MAS based on
Service-Oriented Architecture (MAS-SOA) has been proposed [11,13]. However, be-
cause SOA web services are trending towards RESTful web services, another equiva-
lent approach based on Resource-Oriented Architecture [14] can be defined (MAS-ROA)
[15].

In this work we have focused on MAS approaches based on ROA for the agentifi-
cation of the IoT. The main contributions of this paper are summarized as follows: (i)
definition of an agent model based on the MAS-ROA approach that enables commu-
nication and control operations at the agent-agent and agent-object level via resources
implemented with RESTful services, (ii) formulation of a workflow model oriented to
control IoT-objects collaboratively through the dynamic composition of resources, and
finally (iii) development of an agent model driven by dynamic control workflows eas-
ily adaptable by end-users at runtime as Yu et al. envision agent technologies and IoT
ecosystems[2].

This paper is organized as follows: Section 2 presents a brief description of the
MAS-ROA approach. In Sect. 3, a proposal of a reference architecture for the MAS-ROA
approach is defined. In Section 4, a working example is detailed in which the MAS-ROA
approach is applied to develop a system for controlling an Ambient Intelligence (AmI)
scenario. Finally, Section 5 outlines our conclusions.

2. From MAS-SOA to MAS-ROA approach

The popularity and acceptance of service-oriented technologies for the development of
distributed systems (e.g. web, mobile and ubiquitous applications) has led to the exten-
sion of web services and Service-Oriented Architecture (SOA) to areas such as agent-
based technologies. Consequently, the MAS-SOA [11] approach has been proposed in
order to take advantage of the benefits offered by web services —autonomy, interoper-
ability, encapsulation, availability and discovery— and software agents —adaptability,
proactiveness, reactivity, rationality, sociability and autonomy [16]— within a single unit
of process such as a service-based agent.

2.1. MAS-SOA approach

The MAS-SOA approach has been realized in specialized frameworks [17,18] and prac-
tical applications [13,19]. Its main goals are focused on developing interoperable appli-

P. Pico-Valencia and J.A. Holgado-Terriza / Integration of MultiAgent Systems568



cations through the modeling of agent actions based on web services that can be used
independently of the platform in which they were deployed. To achieve the agent goals,
the developer can adopt two mechanisms, the modeling of the agent behavior in base of
agent actions as static invocations of web services as well as the modeling of the agents
in terms of search strategies in order to discover dynamically the suitable services.

In the first mechanism, agents must invoke one or more web services to execute spe-
cialized processes (e.g. algorithms, reasoning processes, data accessing, data validation,
data fusion). In this case, the execution of the agent actions is merely sequential and,
consequently, if the control flow is blocked by a failure, then the agent could not recover
from that failure by itself.

In the second mechanism, a generic behavior have to model in terms of external
services required by the agent. The agent can recover these services directly querying
on distributed repositories such as the Yellow Pages implemented by the Java Agent
DEvelopment Framework (JADE). In this way, the agent can be recovered by itself if any
service fails.

The two possible strategies described above have had undoubtedly a positive impact
on the development of modular MASs. In fact, the main benefits arising from merging
of MASs and SOA revolve around self-adaptive, lightweight, fault-tolerant agents. Nev-
ertheless, distributed systems based on SOA are recently scaling towards ROA [20] be-
cause RESTful web services has greater flexibility and lower implementation overhead
than SOAP web services [21,10].

2.2. MAS-ROA approach

Resource Oriented Architecture (ROA) is an architectural style for distributed computing
that proposes the design and development of software modeled by means of resources
[14]. A resource is a distributed component that has a standard common interface through
which it is directly accessed [20]. In general, the resources associated with REST ar-
chitectures are implemented by RESTful web services [21]. This kind of web services
expose data-types and functionalities through Uniform Resource Identifiers (URIs) sup-
ported by four web methods such as POST, GET, PUT and DELETE. From these meth-
ods it is possible to create, retrieve, update and delete resources, respectively [21].

MAS-ROA can be defined as a novel approach in which a multi-agent system is
modeled as a set of single agents that achieve their goals from invoking a set of resources
(implemented as RESTful services) distributed on the web. The use of such components
enables agents to enhance the same properties reached by MAS-SOA agents. However,
new benefits can be achieved such as a higher scalability, an improved uniform access-
ing, and a better performance in contrast to MAS-SOA agents [21]. These features are
described as follows:

• Lighter-weight smart agents. The intelligence of the agents can be distributed
for both architectures, MAS-SOA and MAS-ROA. In both cases, agents can be
designed by decoupling the complex actions of the agent’s internal structure and,
consequently, the agent will be more lightweight. However, in the case of agents
that adopt the MAS-ROA philosophy, they provide a better response time in the
actions executed by invoking RESTful services [21].

• Improved uniform accessing. MAS-ROA’s agents are compatible with the invo-
cation of resources through URIs —typical of the modern Web. Thus, agents can

P. Pico-Valencia and J.A. Holgado-Terriza / Integration of MultiAgent Systems 569



communicate and control diverse type of entities (e.g. agents, IoT-objects) and
applications (web, mobile, ubiquitous). In addition, the use of a uniform inter-
face facilitates user-machine and machine-machine interaction as IoA and IoT
ecosystems demand.

• Adaptive agents. MAS-SOA agents incorporate a service discovery mechanism
from which agents can determine at runtime the web services required to achieve
their goals. This mechanism can be easily extended to the MAS-ROA approach
in order to provide a more flexible mechanism. Therefore, agents can discover ex-
ternal counterpart agents dynamically and execute collaborative tasks with them
invoking their corresponding RESTful services, in a scalable way.

3. Multi-Agent System based on Resources-Oriented Architectures (MAS-ROA)

A MAS-ROA architecture can be applied for developing general distributed MAS for
web, mobile or ubiquitous applications. However, the reference architecture proposed
in this study is specific for accessing and controlling IoT objects. These architecture is
illustrated in Figure 1.

Figure 1. A reference architecture for MAS-ROA.

In general, the proposed MAS-ROA reference architecture (Figure 1) has been de-
scribed using the N-layer architecture. Specifically, the architecture is composed of six
layers such as: thing, service, decision making, integration, agent, and interaction layers.

At the lowest level of abstraction is the layer called “Thing” Layer. This layer is
independent of the MAS-ROA architecture. It mainly consists of physical objects or
“things” available in IoT ecosystems (e.g. sensors and actuators). This layer can include
resources provided by middlewares such as openHAB —a specific platform that can
access to resources associated with physical objects.

At the next level is the Resources Layer or ROA Layer. This layer manages and
registers the RESTful services that enable the access to the available resources in IoT

P. Pico-Valencia and J.A. Holgado-Terriza / Integration of MultiAgent Systems570



ecosystems. The deployed services are only functional components that execute actions
over the IoT objects. In this level, these services cannot operate proactively.

Then, the Making-Decision Layer is in charge of accessing the RESTful service
repositories in order to discover the most suitable services to meet a specific objective.
This process is performed based on the context and data required by agents (e.g. the
temperature and the humidity to control HVAC system).

The data requirements used by the Making-Decision Layer are determined on the
basis of a control logic (workflow) from which the objects connected to one or more IoT
ecosystems are accessed and controlled. Therefore, a workflow defines the sequence of
invocations of specific resources that must be executed to fulfill the goals associated with
the Agent Layer.

Finally, at the highest level of abstraction is the Interaction Layer. This layer enables
agents external users and applications (e.g. web, mobile) to make requests for monitoring
the conditions of IoT ecosystems and objects connected to them.

3.1. Agent model

Based on the MAS-ROA reference architecture (Figure 1), each agent must execute a
set of tasks to manage its life cycle as well the interaction to other external entities over
four basic components including: communication interface, discovery mechanism, con-
trol workflow and the agent execution environment. These components are illustrated in
Figure 2.

Figure 2. General schema of an agent based MAS-ROA approach.

3.1.1. Agent Request-Response Task

The communication process in a MAS-ROA is essential. An agent can communicate with
external agents, IoT-objects and even with users. To address this issue, a specific task
called Agent Request-Response Task is integrated into each agent to handle the interac-
tion to other entity (e.g., IoT object or agent). In agent-agent interaction, the agent sender
invokes a request to a specific REST interface identified by an URI in order to send a
message to other counterpart agents using the Agent Communication Language (ACL)

P. Pico-Valencia and J.A. Holgado-Terriza / Integration of MultiAgent Systems 571



proposed by the Foundation for Intelligent Physical Agents (FIPA). Once the request is
mapped to a FIPA-ACL message, counterpart agent can receive that message. After the
message is processed, a response is returned by agent receiver to agent sender through
REST interface. Figure 3 illustrates the corresponding schema.

The use of URIs to carry out MAS-level communication in MAS-ROA facilitates
uniform communications over web, mobile and IoT applications. Additionally, the com-
munication processes in MAS-ROA are mapped with the parameters of a FIPA-ACL
message (e.g. sender, receiver, content, language, encoding) in order to maintain support
with the agent communication standard.

Figure 3. FIPA agent communication via REST.

3.1.2. Agent Control Task

This task is in charge of executing the control actions addressed by workflow over the
objects connected to the IoT ecosystems. A workflow is the control unit that contains a
description of the sequence of actions that the agent must perform to achieve its goals
over the IoT ecosystem where the agent runs. The execution of the specific actions into
the workflow is driven by the invocation of one or more requests to RESTful web services
to get access indirectly to external resources (e.g. physical IoT-objects).

As Figure 1 shows, a workflow Wi can involve one or more invocations to specific
RESTful web services Wi < R1,R2,Rn >. These services are found through a discovery
mechanism executed over distributed repositories on the Web. Therefore, agent can select
dynamically the suitable web services at runtime in order to fulfill its resource demands,
and even change these web services by other ones when it is required (e.g. faults in
servers, resources or IoT-objects).

3.1.3. Agent Discovery Task

This task is responsible to find the candidate web-services required by an agent when the
workflow is executed. This task is executed frequently at different times of the agent’s life
cycle, such as: when the agent starts for the first time, while the agent has not completed
its workflow, and when its workflow presents inconsistencies; that is, when some of the
previously discovered resources report a failure in its operation.

The service discovery process consists of mapping the repositories of resources in a
similar way as the JADE Yellow Pages mechanism does. This mapping process is based
on a specific criteria which is based on the location context and data provided by the IoT-
objects; for example, the temperature and humidity magnitudes of the room of a smart
home.

P. Pico-Valencia and J.A. Holgado-Terriza / Integration of MultiAgent Systems572



3.1.4. Agent Execution Environment

The agent model employed by the MAS-ROA approach follows the guidelines of the
reactive agent model. This model of agents provides autonomy based on the stimulus-
response model with the capacity to react to changes in the environment in which it
operates [16].

The Agent Execution Environment introduced as part of the agent model proposed
for MAS-ROA synchronizes the life cycle of the agent. Taking into account the wide
use and efficiency of the JADE framework, we recommend its use to implement this
component. However, it is possible to use other frameworks (e.g. Jadex, Jason) [22],
but the selected framework complies with the FIPA-ACL standard in order to ensure
functional interoperability between agents that run over both intra-platforms and inter-
platforms of agents distributed on the Internet.

4. Experimental evaluation

Some experiments are conducted in order to evaluate our proposed MAS-ROA architec-
ture approach to control an IoT ecosystem through RESTful services. The experimental
tests have been focused on evaluating the performance of the workflow of two agents
invoking RESTful services and their capability in terms of communication (at intra-
platform and inter-platform level), adaptation (performed by users and the agent itself),
interoperability (using resources deployed on heterogeneous ROAs), and the capability
of cooperation for the accomplishment of goals.

4.1. Scenario of IoT

This scenario consisted of four IoT-objects installed in the room of a smart home from
which thermal and lighting comfort to their inhabitants must be offered. These objects
—illumination sensor (IS), light bulb (LB), temperature sensor (T S) and heating system
(HS)— were implemented with the openHAB platform because it provides a gateway
for accessing to the physical IoT-objects through a REST interface.

Data associated to the resources IoT-objects were handled according to two work-
flows focused mainly on providing thermal (Wthermal) and lighting (Wlighting) comfort to
inhabitants. The logic of control of Wthermal , specifies the necessity for reading the room’s
temperature (T S) and setting the heating system (HS) coherently. Likewise, the logic of
control of Wlighting, defines the necessity for reading the room’s lighting level (IS) and
setting the light-bulbs (LB) installed in the same location.

4.2. MAS-ROA: workflows performance

We test both Wthermal and lighting Wlighting workflows —over a laptop with 2.5 GHz i7
Intel Core , 16 GB RAM and Windows 8.1 operating system— in order to compare the
times required to be fully processed with an equivalent application based on MAS-SOA.
The obtained response times are shown in Figures 4-a for MAS-ROA (invoking resources
with HTTP dynamic Client) and 4-b for MAS-SOA (invoking services with the DPWS
framework) after the execution of 50 iterations.

P. Pico-Valencia and J.A. Holgado-Terriza / Integration of MultiAgent Systems 573



(a) Workflow based on MAS-ROA (b) Workflow based on MAS-SOA

Figure 4. Times required for processing (a) workflows based on MAS-SOA (using HTTP Dynamic Client)
and (b) workflows based on MAS-SOA (using Devices Profile Web Services).

The response times required for MAS-SOA and MAS-ROA show that the work-
flows based on an architecture MAS-SOA required an average of 17.01 ms while in the
case of the equivalent workflows based on MAS-ROA was required 22.60 ms. Although
some previous works have shown an important difference between the performances of
SOAP services compared to RESTful [21] services in favor of the last ones, our exper-
iment tests seems to contradict this result (only 5.59 ms equivalent to 24%). The found
differences depend essentially in a large extent on the technologies used. In MAS-ROA
the OpenHAB platform introduces a complex framework to get access by a REST inter-
face to heterogeneous physical IoT-objects. In contrast, MAS-SOA is implemented on
lightweight services oriented to resource-restricted devices such as DPWS.

4.3. MAS-ROA: Communication performance

The communication performance was evaluated adopting a MAS-ROA agent through
both the (i) JADE Gateway and a (ii) REST interface. The results obtained are illustrated
in Figure 5. In general they show an increase of 76% of the time required by (a) respect to
(b) to send a FIPA-ACL message and the corresponding response. However, despite the
slight increase in the time required to communicate with an agent via its REST interface,
the adoption of this mechanism facilitates greatly the communications at the level of
inter-platform agents since the appropriate parameters are setting and encapsulated to
avoid errors in communications. Even so, to minimize the time penalization of the MAS-
ROA systems, it is possible to adopt a JADE gateway for the intra-agent communication
process, which provides a FIPA communication mechanism at a lower level than the
REST communication interface.

4.4. Additional evaluation

Further qualitative aspects were evaluated during the quantitative experiment, such as
the scope for agent adaptability, and the support for interoperability in MAS-ROA. In
summary, the agents invoked successfully RESTful services deployed in heterogeneous
ROAs as long as those services had previously been publicly published in the Resource
Directory. Additionally, the agents had the ability to manifest self-adaptation and exter-
nal adaptation. On the hand, self-adaptation was accomplished by agents, which at the
moment of receiving inconsistent responses from the current IoT-objects defined in their

P. Pico-Valencia and J.A. Holgado-Terriza / Integration of MultiAgent Systems574



Figure 5. Times required to send&receive a FIPA-ACL message with the JADE Gateway and REST interface.

workflow, they are able to discover new equivalent REST services in the resource ecosys-
tem. Hence, they can be recovered from resource failures. On the other hand, the ex-
ternal adaptation was also successfully supported by the agents after end-users changed
the current workflow managed by the agent in observation. From this experience, it is
recommended to create one or several workflows for each IoT-object so that agents can
manage them consistently.

5. Conclusions

Resource consumption on distributed systems is currently a trend. The results obtained
in this study show that agents based on SOA (DPWS services) and ROA (RESTful ser-
vices) does not imply an excessive extra cost in terms of performance. Merging MASs
with ROA allow for better performances because HTTP invocations use lightweight mes-
sages than generic SOAP web services [21]. However, this study has demonstrated that
invocations on lightweight SOA infrastructures such as DPWS have quite similar results
to RESTful services.

The use of URIs for establishing the agent communication facilitates the automa-
tion of tasks on IoT agentified scenarios because users, agents, IoT-objects and exter-
nal applications (e.g. web, mobile) can interact uniformely in order to control heteroge-
neous IoT ecosystems. In any case, agents based on our proposal are capable to manage
communications, control of IoT-objects and user-interaction using a same style. This en-
ables interoperability between heterogeneous IoT ecosystems, agent platforms and exter-
nal applications as real IoA applications for smart cities, healthcare, and smart industry
demand.

MAS-ROA is a useful approach to perform the process of agentification of the IoT.
In fact, our approach enables agents to coordinate control actions over IoT-objects de-
ployed on heterogeneous ecosystems in a proactive and smart way by using a workflow
that is prepared and put into operation at runtime by the agent itself. This mechanism
helps us to carry out the adaptation of agents by both end-users (updating the workflow

P. Pico-Valencia and J.A. Holgado-Terriza / Integration of MultiAgent Systems 575



instance) and the agent itself (updating invocations to new resources). In addition, the
adoption of MAS-ROA agents provide more lightweight MASs that can run within the
IoT-objects themselves.

References

[1] C. Savaglio, G. Fortino, M. Ganzha, M. Paprzycki, Costin Bădică, and M. Ivanovic. Agent-Based Com-
puting in the Internet of Things: A Survey. In: International Symposium on Intelligent and Distributed
Computing (2017) 307-–320.

[2] H. Yu, Z. Shen, and C. Leung. From internet of things to internet of agents. In: IEEE International
Conference on and IEEE Cyber, Physical and Social Computing Green Computing and Communications
(GreenCom) (2013) 1054–1057.

[3] S. Li, L. Xu, and S. Zhao, The internet of things: a survey, Information Systems Frontiers 17 (2015),
243–259.

[4] T. Perumal, M.N. Sulaiman, N. Mustapha, A. Shahi, and R. Thinaharan. Proactive architecture for Inter-
net of Things (IoTs) management in smart homes. In: 2014 IEEE 3rd Global Conference on Consumer
Electronics (GCCE) (2014) 16–17.

[5] P. Pico-Valencia, and J.A. Holgado-Terriza. Semantic agent contracts for Internet of Agents. In:
IEEE/WIC/ACM Conference on International Web Intelligence Workshops (2016) 76–79.

[6] F. Carlier, and V. Renault. IoT-a, Embedded Agents for Smart Internet of Things. Application on a
Display Wall. In: IEEE/WIC/ACM International Conference on Web Intelligence (2016) 80–83.

[7] A.M. Mzahm, M.S. Ahmad, A.Y.C. Tang, and A. Ahmad. IoT-a, Towards a Design Model for Things
in Agents of Things. In: Proceedings of the International Conference on Internet of Things and Cloud
Computing (ICC ’16) (2016) 41:1–41:5.

[8] G. Fortino, A. Guerrieri, and W. Russo. Agent-oriented smart objects development. In: 2012 IEEE 16th
International Conference on Computer Supported Cooperative Work in Design (2012) 907–912.

[9] A. Forestiero. Multi-agent recommendation system in Internet of Things. In: Proceedings of the 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (2017) 772–775.

[10] G. Xiaofeng, S. Jianjing, Y. Zuwei. On software development based on SOA and ROA. In: 2010 Chinese
Control and Decision Conference (CCDC) (2010) 1032–1035.

[11] L. Ribeiro, J. Barata, and P. Mendes. MAS and SOA: complementary automation paradigms. In Innova-
tion in manufacturing networks (2008) 259–268.

[12] M. Wooldridge. An introduction to multiagent systems. Second edition. Wiley Publishing, 2009.
[13] D. Wang, L. Ren, and J. Li. Modeling intelligent transportation systems with multi-agent on SOA. In:

2010 International Conference on Intelligent Computing and Integrated Systems (2010) 717–720.
[14] H. Overdick. The resource-oriented architecture. In: IEEE Congress on Services (2007) 340–347.
[15] T. Leppänen. Resource-oriented mobile agent and software framework for the Internet of Things. Uni-

versity of Oulu, Faculty of Information Technology and Electrical Engineering (2018).
[16] M. Wooldridge. An introduction to multiagent systems. Second ed. Wiley Publishing, 2009.
[17] J. Lee, S. Lee, and P. Wang. A framework for composing SOAP, non-SOAP and non-web services, IEEE

Transactions on Services Computing 8 (2015), 240–250.
[18] P. Pico-Valencia, and J.A. Holgado-Terriza, A framework for composing SOAP, non-SOAP and non-web

services, Procedia Computer Science 94 (2016), 121–128.
[19] J. Wang, Q. Zhu, and Y. Ma. An agent-based hybrid service delivery for coordinating internet of things

and 3rd party service providers, Journal of Network and Computer Applications 36 (2013), 1684–1695.
[20] R. Lucchi, and M. Millot. Resource oriented architecture and REST, European Commission, Joint Re-

search Centre, Institute for Environment and Sustainability, EUR 23397 (2008).
[21] J. Wang, Q. Zhu, and Y. Ma. Performance Evaluation of RESTful Web Services for Mobile Devices, Int.

Arab J. e-Technol 1 (2010), 72–78.
[22] R. Bordini, L. Braubach, M. Dastani, A. Seghrouchni, J. Gomez-Sanz, J. Leite, G. O’Hare, A. Pokahr,

and A. Ricci. A survey of programming languages and platforms for multi-agent systems, Informatica
30 (2006).

P. Pico-Valencia and J.A. Holgado-Terriza / Integration of MultiAgent Systems576


