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Abstract. Existing full-body tracking systems, which use Inertial Measurement 
Units (IMUs) as sensing unit, require expert knowledge for setup and data collection. 
Thus, the daily application for human body tracking is difficult. In particular, in the 
field of active and assisted living (AAL), tracking human movements would enable 
novel insights not only into the quantity but also into the quality of human movement, 
for example by monitoring functional training. While the current market offers a 
wide range of products with vastly different properties, literature lacks guidelines 
for choosing IMUs for body tracking applications. Therefore, this paper introduces 
developments towards an IMU evaluation framework for human body tracking 
which compares IMUs against five requirement areas that consider device features 
and data quality. The data quality is assessed by conducting a static and a dynamic 
error analysis. In a first application to four IMUs of different component 
consumption, the IMU evaluation framework convinced as promising tool for IMU 
selection. 
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1. Introduction 

In recent years, sensor miniaturization has been a driver for product innovation in many 
areas. The miniaturization of Inertial Measurement Units (IMUs) for instance enables 
numerous applications including the tracking of moving objects by computing 
orientation [1,2]. In the field of human movement analysis, the integration of IMUs in 
wearable full-body tracking systems has been realized by a few specialized 
manufacturers and start-ups [3], such as Xsens (Xsens Technologies B.V., Enschede, 
The Netherlands), Enflux (Enflux, San Francisco, United States) or Rokoko (Rokoko 
Electronics, Copenhagen, Denmark). In general, all these systems aim at assessing 
people’s movement outside the laboratory [4,5]. In particular, in the research field of 
Active and Assisted Living (AAL), mobility for older people means independence and 
participation in social life. Furthermore, the functional ability of being mobile, including 
exercise, promotes healthy aging and postpones frailty [6]. In order to avoid injury and 
maintain functional ability, it is important that exercises are performed in a proper way. 
Exercise monitoring of older people at their homes could benefit from wearing an IMU-
based full-body tracking system. The quality assessment of exercise performance could 
not only provide meaningful feedback to the users themselves but it could also help 
supervising entities like trainers or doctors to adjust training according to the users’ 
abilities. Functional training has been supported technologically in various AAL projects 
for better quality of life and health of older people [7,8]; however, only few have 
considered IMUs as sensor technology so far [9,10]. The required expert knowledge of 
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existing full-body tracking systems for setup and data acquisition as well as their fixed 
configuration of IMU placements is unsuitable for the target group of older people. Thus, 
we decided on implementing a human body tracking system where number, position, and 
hardware can be chosen according to application requirements. 

Available IMUs on the market differ in various aspects including component 
composition. The range of products starts at basic packages, for which casing, battery 
and data transmission have to be added separately, up to turnkey solutions. Some of the 
turnkey solutions are even capable of outputting their orientation directly. Due to the 
variety of options, IMUs have to be selected based on criteria. 

Existing works stated some criteria related to IMU selection such as power 
consumption and sampling rate [1,11-13]. However, none considered data quality of the 
IMU measurements, which is a crucial factor since all further processing steps depend 
on it. 

Thus, this paper introduces an evaluation framework for wearable IMUs used in 
human body tracking that considers both, hardware features and data quality. In order to 
assess its performance, the framework is applied to IMUs with different component 
composition. Based on the results of the application, possible improvements and 
adaptations of the framework should be identified and discussed. 

2. Methods 

2.1. IMU evaluation requirements 

In recent years, considerably little effort has been investigated in the comparison of IMU 
performance with respect to human motion analysis. Ahmad et al. [1] identified form 
factor, data accuracy, response rate, and the degree of freedom (DOF) when selecting 
IMUs for various applications. Data accuracy was described to be dependent on the 
selected sensor fusion which reduced sensor drift and other errors introduced by the 
sensors. During the development of their own IMU for the analysis of Parkinson’s 
disease symptoms, Rodríguez-Martín et al. [11] stated several IMU requirements, 
including long, unsupervised runtime, minimum power consumption, wearable form 
factor and connectivity to other devices. Within their work, they compared twelve 
commercial IMUs including the Xsens MTw and the Physilog 3 as wireless body 
tracking sensors. The conducted comparison relied purely on market analysis without 
looking at data samples of the actual devices. A latest design methodology for motion 
capture wearables, called Octopus, is exclusively based on review of publication and a 
market research [13]. It considers connection, attachment method, and the physical 
properties of the device such as shape, dimensions, weight, housing material and color.  

Based on this research, we created a demand profile for IMUs in human body 
tracking. In addition, we considered a role model for the framework since the usage of 
such full-body tracking systems require expert knowledge, which complicates the 
independent usage, e.g. for AAL applications, and the predefined number and positions 
of IMUs decrease the flexibility of applications. Hence, the full-body tracking system 
that uses wireless IMUs, namely the Xsens MVN Awinda [14] is considered as role 
model. Finally, the identified requirements for human body tracking are divided into five 
areas: 

Form factor: Wearable IMUs for wireless body tracking are available in different 
dimensions. Nevertheless, they should be appropriate for unobtrusive integration into 
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clothes. The Xsens MVN Awinda uses Velcro straps to attach the IMUs onto predefined 
body segments. Each IMU comes with dimensions of 47x30x13mm and weights 16g 
[15]. Integration can be additionally possible using clips or other simple methods of 
fastening [1,13]. 

Mobility: The maximum possible operating time depends on battery capacity, 
sampling rate and the means of data transmission. A runtime of 6 h at 60 Hz with wireless 
transmission is considered as threshold for the framework since high-end systems like 
Xsens MVN Awinda work with these specifications [14]. Ideally, the battery is 
rechargeable via Universal Serial Bus (USB). 

Data acquisition: For immediate feedback to users, near real-time data processing 
should be targeted, i.e. showing a latency time of at most 100ms [16]. Furthermore, 
wireless data transmission should be considered for avoiding cables and, thus, difficult 
setup. For example, Bluetooth Low Energy (BLE) is most widely supported by consumer 
smartphones and meets the requirement of fast data transmission. The supported 
sampling rate of the IMU should be at least 60 Hz , being higher than the suggestion of 
40 Hz by [11]. An API for monitoring the hardware’s health status and for customization 
of applications is a basic requirement. This should enable access to the IMU’s raw data. 

Additional features: The price of each IMU should be of concern since we plan to 
develop a full-body tracking system to consist of at least five IMUs [4]. Considering the 
current prices of smart wearables such as smartphones, we expect that people might be 
willing to spend the same amount for a wearable IMU-based full-body tracking system, 
being priced up to €500 [17], i.e. the price of a single IMU should not exceed € 100. In 
addition, the possibility of building a sensor network should be possible so that multiple 
IMUs can interact with each other for synchronization purposes.  

Reliable recognition of human motion: This requirement area includes the 
verification of how robust and reproducible the data provided by the IMU is for full-
body tracking. Most commonly, IMUs with 6-DOF, which comprise a 3D accelerometer 
and a 3D gyroscope, or 9-DOF IMUs, which add a 3D magnetometer, are used [1]. Thus, 
at least 6-DOF IMUs should be required. Further sensors, like the magnetometer or the 
barometer are optional for consideration in orientation estimation. With respect to data 
quality, a static and dynamic error analysis support the evaluation of IMUs by identifying 
error behavior of the IMUs and rank the devices upon these results (see subsection 2.2). 

The more requirements of the framework are fulfilled by the IMU under 
investigation, the more appropriate it should be for the task of body tracking. 

2.2. Static and dynamic error analysis 

Static and dynamic error analysis were used for the objective evaluation of the data 
quality of each IMU. 

The static error analysis aims at evaluating the amount of inherent noise in the 
sensor readings, particularly, the gyroscope drift error. For a static and undisturbed 
position, the IMU is fixed onto a table and data is recorded for 120 min without 
movement at room temperature. If available, the IMU’s internal calibration routine is 
used to dampen the noise. To quantify the residual noise occurring while the sensor 
experiences no movement, an Allan variance analysis is conducted as described in El-
Sheimy et al. [18] determining two types of error quantity: the random walk and the bias 
stability. The Angle Random Walk (ARW) or Velocity Random Walk (VRW) is the  
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Figure 1. Left: Motorized tripod (on which the device under test is mounted) with additional Arduino micro 
controller unit and manual controls; Right: IMU rotations about z- and y-axis. 
 
influence of high-frequency noise. The bias stability is dependent on the influence of 
low-frequency noise mainly coming from the sensor’s electronics. With the bias 
changing over time, this metric tells the best expected bias stability (BS) from this IMU. 
Of both quantities, the root mean square error (RMS) over x-, y- and z-axis is calculated, 
for which lower numbers imply better results. 

By conducting a dynamic error analysis, the performance of the sensors in motion 
is assessed and compared to simulated data. To move the IMU in a controlled manner, a 
motorized pan-tilt tripod and an Arduino board is used to conduct counterclockwise z- 
and y-rotations of 180° (see Figure 1). All rotations are performed at a programmed 
speed of 166.7°/s that roughly resembles a natural limb rotation. To mark beginning and 
end of the sequence, rotations at maximum speed of the motors around the z-axis are 
executed giving clearly distinguishable impulses in the data. If necessary, the IMU’s 
frames are mapped to a right-handed coordinate system, where the positive vertical z-
axis points upwards, the positive y-axis to the right, and the positive x-axis frontwards. 
Sensor fusion algorithm such as described by [19] are used to calculate quaternions 
representing the orientation of each IMU over time. For comparison, the entire motion 
sequence is simulated using the spherical linear interpolation (SLERP) of quaternions 
which is commonly used to smoothly animate 3D rotations [20]. The calculated and 
simulated quaternions are applied to rotate a unit vector, resulting in an ideal and an 
actual trajectory. The idea is to determine the error by using the distance function 

 that computes the angular deviation between two quaternions [21]: 

 (1) 

The denotation  corresponds to the inner product of the two quaternions  
and . The range of the distance function is between 0 and π, where 0 means that the 
compared rotations result in the same orientation. Values close to π represent maximal 
angular deviation from simulated orientation. 

 

 
Figure 2. IMUs of different components composition from left to right: BNO055 board, Intel Curie board, 
MetaMotionC and Physilog 5. 
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3. Results 

In this section the first application of the framework is presented showing the fulfilments 
of the requirements and the ranking of the static and dynamic error analysis (Table 1). 
Thus, four IMUs were selected based on their component composition. The BNO055 
board [22] and the Intel Curie board [23] represented basic packages that can be 
integrated into low-level prototypes. In this case, “low-level” means that the IMU 
requires additional hardware, like power supply and casing. The MetaMotionC [24] and 
Physilog 5 [25] represented turnkey solutions that work out of the box and come with 
complementary software. We chose these devices due to their small size, wide 
availability, and their differing component composition. 

Form factor: The dimensions of all four devices are sufficient (Figure 2). However, 
the BNO055 and Curie provide no attachment to the body. This could be circumvented 
by using 3D printed parts. For the MetaMotionC, the 3D-printed case provided by the 
manufacturer was used. Physilog provides a rubber clip with each device. 

Mobility: The Physilog comes with a USB-chargeable battery included in the 
casing. BNO055 and Curie have to be powered externally, although the Curie provides 
a charging circuit. The MetaMotionC does not provide an integrated rechargeable battery 
and is instead powered by a coin cell. 

Data acquisition: Except BNO055, which supports only I²C communication, all 
investigated IMUs support BLE transmission. Regarding API, libraries are freely 
available for all boards except Physilog. 

Additional features: The Physilog is the most expensive one of the selected IMUs 
with € 499 per device, which would sum up to € 2,495 for a full-body tracking system. 
All others were within the required price range. The support for multiple sensors is 
limited. Solely Physilog and MetaMotionC provide basic synchronization by allowing 
IMUs to start and stop simultaneously. 
 

Table 1. Application of IMU evaluation framework to four IMUs: ‘X’ marks fulfilment of requirement and 
the rank of each IMU is given from 1 (best) to 4 for static and dynamic error analysis. 

 Physilog 5 MetaMotionC BNO055 Intel Curie 
Form Factor     
Application to clothes X X   
Size < 47x30x13 mm X X X X 
Weight < 16 g X X X X 
Mobility     
Battery life > 6 h X X   
Chargeable battery X X   
USB charging X   X 
Data acquisition     
Bluetooth data transmission X X  X 
Sampling rate > 60 Hz X X X X 
API available  X X X 
Additional features     
Price less than € 100  X X X 
Multiple sensor network 
feasibility X X   

Reliable recognition     
6-DOF IMU X X X X 
3-DOF magnetometer X X X  
Barometer X X   
Static error analysis – RW 2 1 4 3 
Static error analysis – BS 1 2 3 4 
Dynamic error analysis 1 2 3 4 
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Figure 3. IMU-based trajectory of unit vector of (A) BNO055, (B) Intel Curie, (C) MetaMotionC and (D) 
Physilog 5 (black) and SLERP-simulated trajectory of the same unit vector (red marked with X and O). 
 

Reliable recognition of human motion: All four selected IMUs provide the 
mandatory 3-DOF gyroscope and accelerometer. Additional sensors are available on the 
Physilog, MetaMotionC and BNO055. The results of the static and dynamic error 
analysis are given in Table 2. The best results related to bias stability came from the 
Physilog measurements (RMS for gyroscope and accelerometer of 7.19 °/h and 0.12 °/h, 
respectively). MetaMotionC provided the lowest amount of random walk (RMS for 
ARW and VRW of 0.0055 °/s/√Hz and 0.0001°/s/√Hz, respectively). For the dynamic 
error analysis, the calculated orientation was compared to the orientation data simulated 
with SLERP (Figure 3). The resulting maximal and mean angular orientation deviations 
are shown in Table 2. The lowest deviation was achieved by using the Physilog data, 
with the MetaMotionC coming close. The BNO055 was ranked third, and the largest 
error by a clear margin came from fusing the Curie data (see Table 1). 
 

Table 2. Static error analysis: RMS of random walk in °/s/√Hz and of bias stability in °/h over the x-, y- and 
z-axis; Dynamic error analysis: maximum and mean angular orientation derivation to SLERP-simulated 
orientation data ranging from 0 to π (= 3.14). 

 Physilog 5 MetaMotionC BNO055 Intel Curie 
Bias stability     

Gyroscope: 7.19 7.43 7.95 7.54 
Accelerometer: 0.12 0.27 0.29 0.50 
Random walk     

ARW: 0.0068 0.0055 0.0455 0.0069 
VRW: 0.0002 0.0001 0.0002 0.0002 

Φ(q1, q2)     
Maximum: 1.12 1.19 1.58 3.14 

Mean: 0.35 0.37 0.43 1.09 
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4. Discussion and conclusions 

The introduced IMU evaluation framework was applied to four IMUs with different 
component composition. Results indicated that the turnkey solutions MetaMotionC and 
Physilog are better due to device features and data quality. Considering the basic 
packages BNO055 and Curie, which ranked behind the turnkey solutions, they differed 
extremely from the other two products in their component composition, i.e. battery and 
casing would have to be added additionally. However, the framework could even 
distinguish between the basic packages and the turnkey solutions by identifying the 
missing components when observing the requirements in the areas mobility and data 
transmission. 

The binary marking of fulfilments gave an overview of how often each IMU meets 
the requirements. The two measures random walk error and bias stability as part of the 
static error analysis of the framework for evaluating data quality proved to be useful and 
in accordance with the results of the dynamic error analysis. With respect to the dynamic 
error analysis, the novel usage of SLERP does not require special equipment and 
provides at the same time reliable reference data, although, it is important to mention that 
the generated reference orientation is idealized. 

If required for a more detailed evaluation, weighting of the requirements could easily 
be included. This would allow emphasis on application-specific aspects, for example, 
favoring mobility over form factor. In addition, the framework could be extended by 
defining exclusion criteria for IMUs as a first step, such as minimal component 
composition. If required, application-specific thresholds for the error quantities of the 
static error analysis could be added as requirements. Furthermore, in a framework 
extension, it would make sense to rate bias stability more important than random walk 
since it relates to the non-linear gyroscope drift, while random walk can be reduced by 
applying additional filters in the orientation estimation process. 

The current IMU evaluation framework provides useful requirements and 
assessment methods to evaluate IMUs objectively for human body tracking. Particularly, 
the orientation simulation by using SLERP proved suitable for a first assessment of the 
IMU’s performance during dynamic motions. 

The next step will be the development of a full-body tracking system based on results 
of the IMU evaluation framework. This system will be used for the application in AAL 
projects for monitoring physical activity. Particularly, in order to provide an advanced 
support for older people to maintain their functional abilities as long as possible, the 
quality of exercise at home will be monitored considering, for example, back and leg 
axis stability. 
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