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Abstract. The main objective of this project was to introduce approaches for 

comprehensive medication risk assessment in people with polypharmacy that 
simultaneously account for multiple drug and gene effects. To achieve this goal, we 

developed an integrated knowledge repository of actionable pharmacogenes and a 

scoring algorithm that was pilot-tested using a data set containing pharmacogenomic 
information of people with polypharmacy. Metabolic phenotyping using resulting 

database demonstrated recall of 83.6% and precision of 87.1%. The final scoring 

algorithm yielded medication risk scores that allowed distinguish frequently 
hospitalized older adults with polypharmacy and older adults with polypharmacy 

with low hospitalization rate (average scores respectively: 75.89±15.45 and 

10.51±1.82, p<0.05). The initial prototype assessment demonstrated feasibility of 
our approach and identified steps for improving risk scoring algorithms. 

Pharmacogenomics-driven medication risk assessment in patient with 

polypharmacy has potential in identifying inadequate drug regimens and preventing 
adverse drug events. 
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1. Introduction 

Polypharmacy has been shown to be a significant risk factor for adverse drug 

reactions, hospitalization, falls, mortality, and other adverse health outcomes especially 

in older adults [1]. Previous studies showed high utility of pharmacogenomics for 

preventing potential side effects of polypharmacy [2]. Pharmacogenomic testing allows 

identify how hereditary profile affects an individual response to drugs. A recent study 

has demonstrated that precision medicine has significant potential in people with 

polypharmacy particularly in older adults with history of urgent care utilization [3]. 

However, majority of current pharmacogenomic decision support tools doesn’t 

provide assessment of complex drug-drug and drug-drug-gene interactions which are 

prevalent in people with polypharmacy and may result in adverse drug events or 

suboptimal drug efficacy. Many of the most frequently prescribed medications for older 

adults are metabolized by multiple cytochrome pathways, each of which, taken alone, 
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insufficiently represents the actual metabolic activity. Thus, development of 

comprehensive decision support tools accounting for multiple drug interactions is a 

crucial step in promoting precision medicine in people with polypharmacy. 

 Our main objective was development of comprehensive pharmacogenomic decision 

support for medication risk assessment in people with polypharmacy. To achieve this 

goal, the project addressed two aims: (1) development of comprehensive knowledge 

repository of actionable pharmacogenes; (2) introduction of scoring approaches 

reflecting potential adverse effect risk levels of complex medication regimens based on 

contemporaneous accounting of pharmacogenomic polymorphisms and multiple drug 

metabolizing pathways. 

2. Methods 

2.1. Data Source 

Information on pharmacogenomic variants and actionable alleles as well as on drug 

metabolizing pathways is dispersed along various data sources. Based on comprehensive 

review of literature, the following sources were utilized to build knowledge base for this 

project: Indiana University Cytochrome P450 (CYP450) Drug Interaction Table, 

SuperCYP, UpToDate, PharmGKB, and SNPedia. The Indiana University (IU) portal 

provides a table of major P450 drug interactions and were used as our initial database 

[4]. SuperCYP contains exhaustive Cytochrome-Drug interaction data [5]. UpToDate is 

a trusted clinical decision support resource used to retrieve information about substrate 

weight status for particular drug metabolism pathways [6]. CYP450 enzyme activity for 

various single nucleotide polymorphisms (SNP), deletions and copy number variations 

(CNV) were imported from PharmGKB and SNPedia. 

2.2. Database 

A platform-independent database was created to merge complex data from different data 

sources. The key component was represented by two tables consisting of drug names and 

enzyme names. Extended from that, we had detail information saved in individual tables 

respectively based on contents and source. We had four kinds of detailed tables, each 

category shared the same schema. The Interactions table contained drug metabolism 

effects; the IteractionStatus table included effect weight information; the Allele table 

stored the allele name of the enzymes and the functionality of those allelic variations; 

and the DrugNames table had the drug aliases such as brand names or chemical names 

of the drugs that helped normalize drug names coming from different sources. 

2.3. Program Structure 

Figure 1 represents the structure of Java program that implemented data aggregation and 

scoring. The application has three working modes: the console mode is used for testing 

and tracing, which has detailed logs; the UI mode provides a user-friendly interface for 

quick searches on single patient; The Batch mode will read or write data directly through 

Excel files. The program is well-documented and provides extensive APIs that allows 

user to configure the settings and parameters. User can easily create their own scoring 
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algorithm by overriding methods in Parser class. The program is also guaranteed to be 

thread safe and have bounded memory usage. 

 

Figure 1. Program structure. 

3. Model 

In our previous study, we experimented with two algorithms, the additive and 

multiplicative algorithms, to numerically represent the risk of potential drug interactions 

based on CYP450 metabolism. We found that the multiplicative approach had limited 

ability to distinguish two patients’ drug-gene interactions [7]. This study represents 

further development of an additive algorithm. 

In additive algorithm, we separated the medication risk assessment score into three 

parts: drug-drug interaction, drug-gene interaction, and gene function score. The gene 

function score is used to represent the impact of single nucleotide polymorphisms of 

CYP450 genes, since allele functionality has a decisive effect on drug metabolism. 

Generally, the global medication regimen risk score S is defined as equation 1: 

             (1)                         (2) 

Where Sg is the gene function score, Sd stands for the score for each drug and is a 

weighted sum of total drug-drug scores and drug-gene score (Equation 2). 

In equation 2, i is the binding enzyme of that drug, j is the other drugs the patient 

also takes and have effects on enzyme i. Si and Sji represents the drug reaction rate 

affected by enzyme and other drugs respectively. The weight Wi represents proportion 

of particular drug metabolism attributed to a specific cytochrome enzyme. The overall 

scoring framework is illustrated in Figure 2 for an abstract drug Z. 
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4. Results 

The resulting database contained 

information on 956 unique drugs, metabolic 

phenotypes of 132 alleles within 10 most 

common cytochromes, 3701 drug-enzyme 

interaction records reflecting effects of 

medications on cytochrome activity, and 

980 enzyme-drug associations delineating 

multiple metabolizing pathways of 

individual drugs. Out of all drug-enzyme 

interactions, 691 were obtained from IU, 

3513 – from SuperCyp, with 503 

overlapping relationships, and 67 were imported from legacy pharmacogenomic testing 

reports (PGx). All enzyme-drug associations were extracted from UpToDate. Out of 132 

allele phenotype characteristics, 54 were obtained from SNPedia, 132 – from PharmGKB 

and 23 from PGx. Validity of the resulting knowledge repository was assessed by 

comparing drug-enzyme interactions and metabolic phenotypes identified using the 

resulting database and reports generated by licensed pharmacogenomics laboratories for 

31 patients with polypharmacy. The recall ( ) and precision 

 for drug-enzyme interaction records was 83.58% and 81.16% 

respectively. For allele metabolic phenotyping, the recall was 84.38%, and precision was 

87.10%. 

We used twelve patients whose pharmacogenomic profile, medication list and 

hospitalization records were available for building the scoring system. Among the twelve 

cases, pharmacogenomic testing indicated actionable genetic polymorphisms in six of 

them, which affected overall metabolism of their prescribed drugs. These six patients 

had high hospitalization rate (HHR) than those without significant pharmacogenomics 

polymorphisms [7]. To obtain optimal parameters for our algorithm, weights for drug-

drug interaction, drug-gene interaction and gene function were modeled in series of 

iterative experiments. Figure 3 shows a graphical view of the patients’ average score 

changes over different factors scaling. We colored the HHR group with red, and low 

hospitalization rate (LHR) group with blue. The comparison between Figure 3a and 

Figure 3b indicated that the gene function factor played a key role in distinguishing two 

groups of patients: the score of HHR group increased rapidly through the increasing of 

gene function factor. The gene function factor had minor impact on LHR group as 

expected. 

Figure 3c demonstrates the impact of drug-drug interaction and drug-gene 

interactions in more detail. Since all the test cases have significant polypharmacy, the 

changes in drug-drug interaction factor lead to obvious change in total score. It also 

showed that drug-gene interaction factor had more influence in HHR group as well as 

gene function factor. 

The modeling revealed that we should set a higher drug-gene interaction and gene 

function factors, and keep drug-drug interaction factor as low as possible. In our 

calculation, the drug-drug interaction factor was eventually set to 0.1 for each competing 

drug, the drug-gene interaction factor was set to 16, and the gene function factor was 30. 

 

Figure 2. Scoring framework for drug Z. 
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       (a)                (b)    (c) 

Figure 3. Patient general score over different interaction factors. 

We calculated the total score for two groups of patients. Table 1 shows the average 

percentage of total score components. Depending on the nature of individual 

polypharmacy and pharmacogenomic profile, there was different contribution of each of 

three total risk score components. The resulting total risk score for frequently 

hospitalized older adults with polypharmacy (75.89±15.45) was statistically significantly 

different (p<0.05) from the total risk score for older adults with polypharmacy with low 

hospitalization rate (10.51±1.82). 

Table 1. Average percentage of drug-drug interaction, drug-gene interaction and gene function score in 

patient’s total score 

 drug-drug drug-gene gene total score (value) 
HHR 0.079 0.325 0.601 75.89±15.45 

LHR 0.453 0.549 0.000 10.51±1.82 
Total 0.266 0.437 0.300 43.20±12.94 

5. Discussion and Conclusion 

Our initial goal was to build a prototype of platform-agnostic medication risk scoring 

system that can potentially help identify patients with polypharmacy in need for 

optimizing their drug regimens and prioritize pharmacogenomics testing in risk 

populations with polypharmacy. The initial prototype testing demonstrated feasibility of 

our approach and helped identify next steps in improving scoring algorithms. Our next 

step is to utilize larger data sets for training and testing the scoring algorithms.  
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