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Abstract. We present a knowledge-base to represent collated infectious disease risk 

(IDR) knowledge. The knowledge is about personal and contextual risk of 

contracting an infectious disease obtained from declarative sources (e.g. Atlas of 
Human Infectious Diseases). Automated prediction requires encoding this 

knowledge in a form that can produce risk probabilities (e.g. Bayesian Network – 

BN). The knowledge-base presented in this paper feeds an algorithm that can auto-
generate the BN. The knowledge from 234 infectious diseases was compiled. From 

this compilation, we designed an ontology and five rule types for modelling IDR 

knowledge in general. The evaluation aims to assess whether the knowledge-base 
structure, and its application to three disease-country contexts, meets the needs of 

personalized IDR prediction system. From the evaluation results, the knowledge-

base conforms to the system’s purpose: personalization of infectious disease risk. 
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1. Introduction 

We envisage a service which predicts a person’s risk of contracting an infectious disease 

(ID) based on their personal attributes (age, diet) and their location (weather, 

geographical features). This service will supply risk predictions to advisor applications 

designed to help users take risk-reducing actions (e.g. wear a mask to avoid influenza 

during a windy week in autumn). 

Knowledge about personal and contextual risk of contracting an ID is largely 

communicated in declarative form; general, stable knowledge is documented in the Atlas 

of Human Infectious Diseases (AHID) and similar books [1-3]; more specific and up to 

date knowledge is conveyed in epidemiology journals. Automated prediction requires 

encoding this knowledge in a form that can produce risk probabilities, such as in a 

Bayesian Network (BN). In previous work [4] we showed that we can yield accurate 

predictions by manually encoding the IDR knowledge in a BN. But this approach is not 

scalable to all IDs, regions and risk factors, nor maintainable to model new knowledge. 

Rather than hardcoding current general knowledge for all IDs as a BN, we seek to 

facilitate the ongoing encoding by epidemiologists of up to date and region-specific ID 

risk. The knowledge is manually represented by experts as ID risk rules (e.g. a rule that 

says smoking can double Tuberculosis (TB) risk) defined over a special purpose 

ontology of ID risk. The knowledge-base (an ontology and collection of ID risk rules) is 
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then automatically converted to a BN, using the BN builder algorithm described in [5]. 

This paper describes the design and evaluation of the knowledge-base. 

2. Knowledge-base Design 

This section describes the methodology used to design the knowledge-base. First, the ID 

literature was summarized to identify risk elements and quantitative forms of risk. From 

this summary, the ‘backbone’ of the IDR ontology: person, infectious disease and 

environment was created. Then, five IDR rule types were designed for representing 

quantitative forms of how risk factors affect an ID risk, defined over the ontology. 

The role of the infectious disease risk (IDR) ontology is to capture and organize 

general IDR knowledge, for both the experts and the BN builder algorithm. An infectious 

disease is an illness caused by a specific pathogen that results from transmission from 

infected person, animal or its reservoir to a susceptible human host [9]. From this 

definition, three entities are involved: (1) pathogen’s availability [10-14], (2) 

transmission method, and (3) susceptible host [15-17]. The compiled summary2 consists 

of 234 unique IDs listed in these declarative sources [1-3]; it was clear that demography, 

behavior and environment are risk elements. Only a few IDs have a genetic risk element. 

Three main ontology classes were created to the represent IDR ‘backbone’ 

specified in this collation: Infectious disease class represents an infectious disease name 

whose risk is being predicted. The person class accommodates the personal risk groups 

for the disease named in the infectious disease class. Risk groups describe susceptibility 

level of host by defining their demographic and behavioral risk elements. The 

environment class explains the transmission method, pathogen reservoir and availability 

of the specified disease. This structure (Fig.1) represents a basic semantic structure for 

general IDs. By default, the ontology instantiated for each ID will contain this structure. 

Knowledge about how these risk factors impact risk of a person contracting an ID 

is encoded as IDR rules over the IDR ontology. The IDR rules are designed to be easy 

for domain experts to use, while allowing automatic population to a BN’s base reasoning. 

The ID risk knowledge is divided into: (1) risk ratios for each risk factor, (2) prevalence 
values for specified regions, (3) pathogen activity information during particular climate 

or location features (e.g. Aedes Aeqypti mosquitoes live at altitudes below 1000m). The 

IDR rules allow three quantitative forms of knowledge: risk ratios as numerical values, 

risk tendency as ordinal values, and risk addition or reduction as percentages. The IDR 

rule types to represent these forms are shown in Table 1, with some declarative examples. 

 

Person Infectious
Diseases

Location Climate

risk of

pathogen
activityprevalence

Environment

Age

Gender Disease
Name

Season

Weather

Features

Country

Occupation

Geocodes

 

Figure 1. The IDR ontology basic structure with some samples of sub-classes (ellipses) 
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Table 1. The IDR rule types that encode quantitative knowledge forms over the IDR ontology, with examples. 

Rule Types Ontology class to encode Value in data forms Examples of declarative 
knowledge to encode 

Real Direct 

Risk Ratios 
{risk factors} in person or 

environment 
Risk ratio in 

0 <  <  
Males have 2.37 times more TB 

risk than females [19] 
Rule: Person(?all) ^ hasGender(?all, Male) -> alterRisk(TB, 2.37) 

Real 
Indirect 

Risk Ratios 

{risk factors} in person or 

environment Risk ratio in % 
Fish intake can reduce the TB risk 
by 50% [20] 

Rule: Person(?all) ^ hasEatingHabits(?all, fish) -> reduceRisk(TB, 50%) 
Vague 

Pathogen 
Status 

{location features and 

climate} in environment 

Pathogen Activity in 

Inactive, LessActive, 
MoreActive 

Mycobacterium tuberculosis is 

more active during humid 
condition [20] 

Rule: Environment(?all) ^ during(?all, humid) -> setPathogen(TB, MoreActive) 
Vague Risk 

Ratios 
{risk factors} in person or 

environment 
Risk ratio in High, 

Low, Medium, n-fold 
People who have low body mass 

index are at a high risk [20] 
Rule: Person(?all) ^ hasBMI(?all, low) -> estimateRisk(TB, high) 

Real 

Prevalence 
{location and specific 

features} in environment 
Prevalence rate in 

%K or % 

TB prevalence in Africa is 395 per 

100,000 population. 
Rule: Environment(?all) ^ hasCountryName(?all, Indonesia) -> setRisk(TB, 0.395) 

3. Evaluation 

Evaluation of the knowledge-base aims to assess whether the ontology and rules meet 

the requirement of the personalization system. Current approaches are evolution-based, 

logical-based, and metric-based [21]. This evaluation was based on the ontology and rule 

types described above being instantiated for three disease-country contexts: TB-Africa 

(34 rules), Dengue-Indonesia (23 rules) and Cholera-India (18 rules) representing air-

borne, vector-borne and food/water-borne ID, respectively [18, 26, 27].  

An evolution-based approach evaluates the ontology based on the changes that may 

happen. A good ontology is able to accommodate changes without reconstructing the 

basic ontology structure [21, 22]. In the IDR ontology, changes in domain happen when 

new risk factors are found which the knowledge engineer needs to represent in the 

ontology. Changes in conceptualization happen as result of different perspectives 

between experts. Informally, a GP and an epidemiologist were asked to advise on the 

IDR ontology: the changes were specific to risk details. Both kinds of changes occurred, 

but the ontology basic structure remains the same. Changes in the explicit specification 

occur when an ontology is translated from other knowledge representation forms. Since 

the IDR ontology was built from ID literature, these changes do not occur. 

The logical-based approach evaluates IDR rules based on rule anomalies that 

usually occur in rule-bases. We used anomalies defined by COVER [23, 24]: unused 
inputs, unsatisfiable condition, unusable consequent, duplicate, circular and 
contradictory rules. All subclasses are created for the purpose of describing ID risk; 

therefore, the unused inputs anomaly cannot happen. All antecedents and consequents of 

IDR rules refer to different classes, thus, there are no circular rules. For the three disease-

country contexts implemented, there are no unsatisfiable condition and unusable 
consequent anomalies. However, these may happen when the knowledge-base 

management system has no integrity checking (e.g. renaming the instances after defining 

rules). Contradictory rules happen when using more than one source to describe the IDR 

knowledge (e.g. one source says, males have higher TB risk than females, another says 

males have lower risk). In this case, the epidemiologist is asked to specify a priority [0-
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1]; the rules with the highest priority are used for BN building. Duplicate rules happen 

when the same risk ratio is expressed using different rule types (e.g. increase risk by 

285% using Real Indirect Risk Ratios, and risk ratio 2.85 using Real Direct Risk Ratios 

type). A user interface with grouping feature will be designed to inform experts about 

similar pre-defined rules at the same disease-country context in the IDR knowledge-base; 

this should eliminate entry of duplicate rules. 

The metric-based approach evaluates the ontology using OntoQA metrics [25]: 

class richness, class importance and relationship richness. The metrics evaluate the 

placement of instances within the ontology and the knowledge-base effectiveness. The 

class richness shows the percentage of unused sub-classes; the lower the percentage, the 

more effective the class. The class importance infers the importance based on the 

dispersion of number of instances. The relationship richness shows: (1) for the infectious 
disease class, how many rule types are utilized; (2) for the person and environment class, 

how many relations are used. Looking at class richness in Table 2, TB is affected by 

personal (no subclasses unused), rather than environmental risk factors (50% unused). 

The class importance confirms this finding as person class for TB is the highest (81.8%); 

and environment class for Cholera has the highest value (54.84%). With regard to 

relationship richness, the person and infectious disease class have higher percentage 

(66.67% and 80%) than environment class. This shows that the IDR is capable of 

personalized decisions; and four of five rule types are used to express IDR knowledge. 

Table 2. Results of each OntoQA metric for each main class of the IDR3 

Metrics Class Results (in %) 
Tuberculosis Dengue Cholera 

Class Richness  Person 0/7 = 0 0/9 = 0 0/4 = 0 
Environment 2/4 = 50 0/8 = 0 0/7 = 0 

Infectious Disease 0/1 = 0 0/1 = 0 0/1 = 0 

Class Importance  Person 27/33 = 81.8 24/46 = 52.17 13/31 = 41.93  
Environment 5/33 = 12.15 21/46 = 45.65 17/31 = 54.84 

Infectious Disease 1/33 = 3.03 1/46 = 2.17 1/31 = 3.22 

Relationship 
Richness 

Person 6/9 = 66.67 9/17 = 52.9 5/11 = 45.45 

Environment 3/9 = 33.33 8/17 = 47.06 6/11 = 54.54 

Infectious Disease 2/5 = 40 4/5 = 80 4/5 = 80 

4. Conclusion and Further Works 

This paper has presented a knowledge-base for encoding infectious disease risk 

knowledge which is used in a personalized IDR prediction system. The basic structure 

of the knowledge-base consists of an ontology and five rule types that represent IDR 

knowledge for all IDs. Three approaches to knowledge-base evaluation have been 

applied. Changes are unavoidable in the ontology evolution; however, none of the 

changes have impact on the ontology basic structure. Four out of six anomaly types are 

possible in the IDR knowledge-base, however, only one of them is caused by overuse of 

IDR rule types. Based on three tested cases, the metric-based approach shows that (1) 

most classes are effective, (2) the ontology is centralized at person and environment 
classes; both are equally important for modelling IDR knowledge, (3) high utilization in 

person and infectious disease classes confirm the system’s purpose: personalization of 

ID risk prediction. 
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