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Abstract. Long term EEG examinations, for example during epilepsy diagnosis, can 

be performed more efficiently with support of automated abnormality detection. 
Currently, these methods are usually developed based on one specific database, 

which limits the possibilities of generalizations. Here, we present a machine learning 

solution for detection of interictal abnormal EEG segments optimized on the 
publically available TUH Abnormal EEG Corpus. The classifier is further re-trained 

and tested on several combinations of publicly available data sets. The results 

achieved internally on the datasets are comparable to the known state of the art, 
while training and testing on different sources produced accuracy in the range of 

67.51% to 99.50%. Lower accuracy is achieved when the training data set is highly 

preprocessed and relatively small. 
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1. Introduction 

The electroencephalogram (EEG) is a signal measurement of the brain's electrical 

activity [1]. It is one of the most commonly used tools for studies on brain functions and 

neurological disorders [2]. In particular, EEG data collection is conducted in patients 

with epilepsy [3] as well as to study the effects of antipsychotic medications and 

abnormal EEG patterns [4]. Current technologies allow long term monitoring, which in 

turn generates large quantities of data. Manual analysis of this data is time-consuming 

and inefficient. Hence, automated methods are needed as support for EEG analysis. 

Here, we focus on detection of interictal (between seizures) abnormal EEG patterns 

referred to as epileptiform discharges. These patterns are used by medical professionals 

for diagnostic and evaluation purposes. To the best of our knowledge, there is no publicly 

available EEG database containing individually labeled epileptiform events (such as 

spikes, sharp waves, slow waves and spike-and-slow-wave complexes [5]). Such detailed 

labelling requires a large amount of work and in the era of well developed machine 

learning algorithms would be of great interest. In the absence of such data we used the 

TUH Abnormal EEG Corpus (v1.1.2) [6], where EEG sessions are labelled as normal 

and abnormal. For this data we developed an algorithm for automatic abnormality 

detection. On later stages, the data from the so-called Bonn set [7] is added in order to 

show classifier robustness in dealing with the new data. Six different combinations of 

training and testing data formed by the subsets of these two databases are considered. 
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2. Methods 

2.1. Data 

Temple University Hospital (TUH) [6] offers a comprehensive source of clinical EEG 

data that is continuously updated. The data resources are available in a complete set of 

23,218 sessions or in several subsets. In addition to every EEG session, a physician's 

report is available summarizing the patient's medications, clinical history and the 

physician's findings. The TUH Abnormal EEG Corpus (v1.1.2), a subset of the TUH 

EEG Corpus (v0.6.0), provides 3017 EEG sessions that have been categorized into 

normal and abnormal recordings. Based on this data we develop and test a classification 

pipeline on automatically categorizing EEG into normal and abnormal recordings. 

Another widely used data source for testing automatic spike and seizure detection 

approaches is provided by the University of Bonn [7]. The database contains five sets 

with 100 records each (Table 1). Decision process 

We categorize the decision process into three stages: pre-processing, feature extraction 

and machine learning classification (Figure 1). As input to our classification algorithm 

we use single channel EEG signals. On the multi-channel TUH data we select the channel 

T5 - O1 derived from the TCP montage as it is proposed by Obeid et al. [8]. Following 

the same source, we consider the first 60 seconds of each recording in the dataset for 

classification. Selecting the same parts of the recordings allows a direct comparison of 

the results. 

2.2. Pre-processing 

The purpose of the pre-processing stage is to unify recordings from different sources, to 

reduce noise and to filter out artifacts. 

The EEG contained in the TUH dataset were recorded with sampling frequencies of 

250 Hz and 256 Hz, while the EEG segments from the Bonn dataset were sampled with 

173.61 Hz. We assume to encounter records of various sampling rates in future scenarios. 

To unify the length of the records we perform a resampling to a fixed sampling frequency.  

The sampling frequency of 250 Hz was chosen as it corresponds to 87% of all used data. 

This choice also implies that only 6% of the data loses information through the 

downsampling (256 Hz files). Epileptiform discharges are known to appear with a 

minimal duration of 20 milliseconds [5]. Hence, waves with a frequency above 50 Hz  

are here not of interest for us. In order to remove high frequency noise we perform band- 
 

 

 

 

 

  

Table 1. Overview of Bonn dataset. 

Set Patients Setup Phase 

A healthy surface EEG open eyes 

B healthy surface EEG closed eyes 

C epilepsy intracranial EEG interictal 

D epilepsy intracranial EEG interictal 

E epilepsy intracranial EEG seizure 

Figure 1. Decision process of EEG data classification. 
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pass filtering with a second order Butterworth filter, which is known for having a flat 

frequency response in the pass-band, setting the lower cut-off frequency to 1 Hz and the 

higher cut-off frequency to 50 Hz. 

Intracranial EEG generally have higher amplitude ranges (order of 100 μV) than 

surface EEG (order of μV) [7]. Since we will test different combinations of training and 

testing data from both measurement methods, we normalize each recording by the mean 

absolute amplitude of the corresponding dataset. 

Artifacts are generally observed in all EEG, regardless of whether they contain 

abnormal signal patterns. They can hamper algorithmic analysis and visual inspection. 

Physiological artifacts can be caused i.a.by saccadic eye movement, eye blinks and 

activity of the scalp muscles, while technical artifacts result from external influences. To 

filter out obvious artifacts we perform an amplitude thresholding. Segments that are 

filled only with zero amplitude values are excluded from further analysis. 

2.3. Feature extraction 

In the feature extraction phase for each previously pre-processed EEG segment a 

representative feature vector is computed describing distinct properties of the signal. 

Wavelet analysis has been reported to be effective in analyzing non-stationary 

signals. The wavelet transform decomposes a signal in terms of scaled and translated 

versions of a mother wavelet and a scaling function [9]. The discrete wavelet transform 

(DWT) has been frequently used in recent epileptic spike and seizure detection 

approaches that have shown promising results [10]. The choice on the maximal level of 

decomposition and an appropriate mother wavelet affect the result of the classification 

system. After testing various wavelets of the Daubechies, Coiflets and Symlets families, 

we have selected Symlets (sym) of order 7 as the basis wavelet in combination with a 

decomposition up to level 6. 

The calculated wavelet coefficients are used to form the feature vectors. To reduce 

the dimensions of the feature vectors statistical features are extracted from the wavelet 

coefficients in each sub-band. The computed sub-bands consist of the detail coefficients 

from level 1 to 6 and the approximation coefficient at decomposition level 6. As features 

we compute the maximum, minimum and the mean of the coefficients and their standard 

deviation. Additionally, we calculate the relative wavelet energy and the entropy for each 

sub-band. Consequently, each feature vector consists of 6 statistical features for each set 

of wavelet coefficients resulting in a feature vector with 42 values. 

2.4. Classification 

In the classification phase the feature vectors derived from the previous processing are 

taken as input for machine learning classifiers. Here, feed-forward neural networks are 

used. After the iterative optimization procedure, the chosen architecture of the networks 

consists of two hidden layers with 15 nodes and tan-sigmoid activation function. The 

output of the networks corresponds to a categorical probability distribution that is 

computed by the softmax function. To reduce the variance of the output we average the 

results of 40 nets to classify a segment. The final decision of whether an EEG is 

considered to be abnormal is concluded by the average class probability distribution for 

all segments in one recording. A recording is classified as abnormal if a threshold of 50% 

for the corresponding probability is exceeded. For following experiments this probability 

threshold is further optimized. 
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3. Results 

For the evaluation of our classification system we carried out several tests on both the 

TUH and the Bonn dataset (Table 2). The probability threshold for classifying an EEG 

as abnormal was chosen according to the highest Youden index for each training/testing 

combination. For each of these test cases the AUC and classification accuracy are 

reported as well as results from prior literature. 

4. Discussion 

The best results on the TUH dataset slightly outperform the current results of Obeid et 

al. [8] and Lopez de Diego [11]. We achieve an accuracy of 79.78% which is slightly 

higher than the reported accuracy of Lopez de Diego of 78.80%. Obeid et al. [8] achieved 

an accuracy of 83.00% on a smaller subset of the TUH evaluation set, but it is not 

reported which specific data was chosen. It is noticeable that our method has a high 

specificity (86.00%) in comparison to the sensitivity (72.44%). The confusion matrix 

indicates that the most frequent misclassification are abnormal EEG falsely classified as 

normal. Since abnormal activity may occur temporary, the lower sensitivity may result 

from the fact that we treat each segment of a longer abnormal recording as abnormal 

during training phase. The AUC value of the ROC curve of 0.8498 indicates a high 

discrimination between the classes abnormal and normal. 

The tests on the Bonn datasets show competitive results in comparison to other 

recent methods. The general distinction of abnormal and normal EEG is performed with 

an accuracy of 98.20% on the full Bonn database. 

The test cases combining the Bonn and TUH datasets show reasonable results. 

Training the classifiers on TUH data achieves an accuracy of 87.20% on the Bonn 

datasets. This result is close to the accuracy achieved when using cross-validation only 

on the full Bonn datasets. Training on the Bonn sets and testing on the TUH evaluation 

data results in an accuracy of 67.51%. A high sensitivity (85.83%) is achieved, while the 

specificity is lower (52.00%). The classification accuracy is lower in comparison to 

training and testing on TUH data only, which is to be expected. However, a higher 

sensitivity is achieved if training is performed on the Bonn data, since the segments for 

training certainly contain abnormal activity due to their manual selection. 

5. Conclusion 

We reported the development and evaluation of a machine learning solution for 

discrimination between normal and abnormal EEG data. While the methodology in 

Table 2. Overview of the results. 

Training data Testing data AUC Accuracy Literature Ref. 

TUH training TUH evaluation .8498 79.78% 78.80% [11] 

Bonn A and D Cross-validation .9995 (±.0011) 99.50% (±1.12%) - - 

Bonn A and E Cross-validation .9920 (±.0179) 99.50% (±1.12%) 97-100% [12–14] 

Bonn A-E Cross-validation .9961 (±.0046) 98.20% (±2%) - - 

TUH training Bonn A-E .9224 87.20% - - 

Bonn A-E TUH evaluation .7541 67.51% - - 
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principle follows the known ideas, the solution shows a number of advantages. The 

choice of features allows for fast computations, thanks to relatively small resulting input 

sizes. At the same time, this choice allows to capture the essential qualities of the data 

and achieve good classification results. An important characteristic of the proposed 

solution is its robustness, even when trained and tested on different sources of data. 

While TUH data set is large and contains raw data, Bonn set is relatively small and pre-

processed. Unsurprisingly, the classification results are the best within the same 

homogeneous dataset, but also training the classifier on the TUH set gives good results 

on the Bonn set. The combination of the proposed classification algorithm with the TUH 

Abnormal Corpus as training data showed very promising results not only in terms of 

accuracy, but also potential usability for the new data sets. 
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