
Timed Contract Compliance Under Event
Timing Uncertainty

Marı́a-Emilia CAMBRONERO a and Luis LLANA b and Gordon J. PACE c,1

a Department of Computer Science, University of Castilla-La Mancha, Albacete, Spain
b Department of Computer Science and Computation, Complutense | University of

Madrid, Spain
c Department of Computer Science, University of Malta

Abstract. Despite that many real-life contracts include time constraints, for in-
stance explicitly specifying deadlines by when to perform actions, or for how long
certain behaviour is prohibited, the literature formalising such notions is surpris-
ingly sparse. Furthermore, one of the major challenges is that compliance is typi-
cally computed with respect to timed event traces with event timestamps assumed
to be perfect. In this paper we present an approach for evaluating compliance under
the effect of imperfect timing information, giving a semantics to analyse contract
violation likelihood.

Keywords. Contract compliance, Formal semantics, Real-time contracts, Fuzzy
time

1. Introduction

Many real-life contracts include concrete time constraints, whether placing limits by
when obligations have to be discharged e.g. “Money is to be made available to the client
with 48 hours of a request for redemption”, or whether it identifies a time window during
which an event is prohibited e.g. “Once disabled, a user may not log in for 1 hour” or
even through temporal delays e.g. “After accessing the service for 30 minutes, the user is
obliged to pay within 5 minutes or lose the right to use the service further”. A number of
contract languages which allow for the description of such real-time matters have been
proposed in the literature, including ones based on deontic logic e.g. [1,2] and automata
e.g. [3]. However, one common feature of these formal approaches is that they handle
compliance analysis in a crisp manner — for a given contract and a sequence of timed
events (each carrying a timestamp), they enable the identification of whether or not that
trace violates the contract, giving a yes or no answer.

Consider the contract clause which states that C
df
=“Once disabled, a user may not

log in for 1 hour”, and the following event trace:

tr
df
= 〈(login, 02h24m58s), (disable, 02h25m02s), (login, 03h25m01s)〉

Typically, the analysis would deduce that contract C has been violated by trace tr due to
the second login event happening within less than an hour of the disable event. The major

1Corresponding Author: Gordon J. Pace; E-mail: gordon.pace@um.edu.mt.

Legal Knowledge and Information Systems
A. Wyner and G. Casini (Eds.)
© 2017 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-838-9-33

33

issue with such an analysis is the difficulty of obtaining perfect timestamps, particularly
if the sources of events may occur in different locations.

In this paper we outline our initial attempts at adapting techniques originally devel-
oped for real-time logics and calculi [13] to enable compliance analysis starting from
traces with fuzzy timed events i.e. the timestamp for each event is not a single point in
time, but a function over time which indicates the likelihood of the event having hap-
pened at that point in time.

2. Fuzzy Timed Event Traces

Trace-based semantics of contracts define whether for a particular contract a given trace
of events violates that contract or not. Given an alphabet of event names which can be
observed EVENT, such semantics typically take a trace ranging over EVENT∗. When
contracts refer to real-time, the traces have to be augmented to have every event tagged
by a timestamp indicating when it occurred. Taking time to range over the non-negative

real numbers: TIME
df
= R+

0 , a real-time trace tr ranges over sequences of timed events
tr ∈ (EVENT×TIME)∗ (with the assumption that time is monotonically increasing along
the trace), or just using a set of timed events tr ∈ 2EVENT×TIME (since the timestamps
implicitly indicate the ordering).

In our case, the time stamps are no longer exact point values, and we assume
that we can only give a likelihood of an event having happened at a particular time.
Thus, rather that associating every observed event with a single value over TIME, we
will use an approach from fuzzy logic, giving a time distribution, associating every
time value with the likelihood of the event having happened at that point in time i.e.

TIMEDISTRIBUTION
df
= TIME → [0,1].

Definition 1 A fuzzy-timed observation is a pair 〈a,T 〉 ∈ FUZZYOBSERVATION, where
a ∈ EVENT is the event name, and T ∈ TIMEDISTRIBUTION is the timing distribution
of that event. A fuzzy-timed trace tr ∈ FUZZYTRACE is a pair 〈es, Δ〉, consisting of
(i) es ∈ M (FUZZYOBSERVATION), a finite multiset of fuzzy-timed observations2; and
(ii) Δ ∈ TIME, the event horizon indicating that the events recorded are from the initial
time window from time 0 and Δ (i.e. events happening beyond this time window are not
recorded).

It is worth noting that the imprecision inherent in the traces is limited to the timing of
the events. We assume that the multiset of event names recorded is faithful with respect
to what really happened i.e. (i) all events are recorded (no events are lost); (ii) events are
not wrongly observed (event integrity); and (iii) no extraneous events are inserted (no
spontaneous generation of event).

Also note, that if the fuzzy observation distributions are probabilistic ones, and inde-
pendent of each other, then we can use a probabilistic approach (e.g. if we are given two
fuzzy-timed observations 〈a1,T1〉 and 〈a2,T2〉, then the probability of both events hap-

2We use the notation M (X) to denote multisets with elements from X . Note that a sequence of fuzzy-
timed observations cannot be used, since there is now no canonical ordering of events, and neither is a set of
observations sufficient, since we may observe two events with the same name and with the same distribution
function.

M.-E. Cambronero et al. / Timed Contract Compliance Under Event Timing Uncertainty34

pening at time t would be T1(t)×T2(t)). However, since this independence is not always
easy to guarantee, we adopt a fuzzy logic approach and will combine likelihood values
using generic binary operators ⊗ (the likelihood of the two observations to happen, a
triangular norm [11]) and ⊕ (the likelihood of either of the two observations to happen,
a triangular conorm). We will write ∏ and ∑ for the generalised versions of ⊗ and ⊕.

We will define a number of operations on fuzzy observations and traces to be used
in the rest of the paper.

Definition 2 We will write eventHorizon(tr) to refer to the event horizon of trace tr

i.e. eventHorizon(〈es,Δ〉) df
= Δ. Fuzzy-timed observations and fuzzy-timed traces can be

shifted earlier in time using the time shift operator 	:

〈a,T 〉 	 δ df
= 〈a,λ t.T (t
δ)〉

〈es,Δ〉 	 δ df
= 〈{e 	 δ | e ∈ es}, Δ
δ 〉

where x
 y
df
= max(x− y,0).

We define the function occurances, which given an event and a fuzzy-timed trace,
returns a multiset of all time distributions which may occur according to the given trace:

occurancesa(〈es,Δ〉) df
= {T ∈ TIMEDISTRIBUTION | 〈a,T 〉 ∈ es}

Finally, we define the likelihood that for a given fuzzy-timed trace es, event a has not
happened in the initial time window [0,δ], written absencees(a,δ) as follows:

absencetr(a,δ)
df
= ∏

T∈occurancesa(tr)
1−

∫ δ

0
T (t) dt

3. A Timed-Contract Language

In order to define compliance and violation of fuzzy-timed traces, we will take a real-
time deontic logic covering obligations, prohibitions, recursion and reparations to show
how typical deontic operators can be given a trace semantics under imprecisely timed
observations. The syntax of the real-time deontic logic is the following:

C ::= � | ⊥ | waitδ (C) | O≤TIME(EVENT)(C ,C) | F≤TIME(EVENT)(C ,C) | μX .C | X

The core of the calculus are obligations and prohibitions, written as O≤δ (a)(C1,C2) and
F≤δ (a)(C1,C2) respectively. Obligation O≤δ (a)(C1,C2) indicates that event a is to be
performed before δ time units pass. If a is performed before the deadline, the continua-
tion contract C1 starts being enforced, but if a is not performed within δ time units, the
reparation contract C2 instead starts being enforced. Dually, prohibition F≤δ (a)(C1,C2)
indicates that event a is prohibited for the upcoming δ time units. If a occurs in this time
frame, the reparation contract C2 is triggered, but if it does not, then the continuation
contract C1 starts being enforced instead. The fact that we give both obligation and pro-
hibition modalities a continuation and reparation, the two modalities are direct duals of
each other: F≤δ (a)(C1,C2) yields the same top-level violations (i.e. ignoring violations
for which a reparation is defined) as O≤δ (a)(C2,C1).

The contract waitδ (C) acts like contract C, but starting after δ time units have
elapsed. The base contracts � and ⊥ are used to denote the contracts which are, respec-
tively, immediately satisfied and violated. Finally, the μ operator is used to denote re-

M.-E. Cambronero et al. / Timed Contract Compliance Under Event Timing Uncertainty 35

cursion — such that the contract μX .C will act like contract C except that every free
instance of X in C will act like μX .C itself.

Note that, for simplicity, all obligations and prohibitions have continuations and
reparations, but if these are not desired, one can use the base contracts � and ⊥. For ex-
ample, to state that one is obliged to logout in 30 minutes, with no reparation or contin-
uation, one would write: O≤30(logout)(�,⊥). In the rest of the paper, to avoid syntactic
overload we will leave out the � and ⊥ continuation and reparation e.g. simply writing
O≤30(logout).

We will now give a fuzzy-timed trace semantics to the timed contract logic. It is
worth observing that when giving a trace semantics for crisp observations, one would
typically define a (crisp) relation between traces and contracts such that a trace and con-
tract are related if and only if the trace led to a violation of the contract. In contrast, in
the case of fuzzy-timed traces, such a relation can only provide fuzzy information — i.e.
we will have a functions [[C]]trvio indicating the likelihood of fuzzy-timed trace tr violating
contract C.

We can define the semantics of the timed contract logic with respect to a fuzzy-timed
trace in this manner. As the base case for the semantics, we can assert that a trace with an
event horizon of 0 cannot result in a violation. Trivially violated and satisfied contracts
similarly given certain results (1 and 0 respectively), while a contract starting with a wait
clause simply shifts the timestamps of the trace and analyses the resulting trace with
the continuation of the contract. Obligation is the most complex operator, for which we
have to separately compute whether the obliged action is performed or not, and combine
with the continuation and reparation of the obligation. Prohibition is given a semantics
in terms of obligation, while the semantics of recursion uses unrolling of the definition.

Definition 3 The trace semantics of violation are defined in terms of the violation func-
tion [[−]]−vio ∈ C × FUZZYTRACE → [0,1], such that for a given contract C and fuzzy
trace tr, [[C]]trvio gives the likelihood of the the observations in trace tr violating contract
C, and is defined as follows:

If eventHorizon(tr) = 0:

[[C]]trvio
df
= 0

Otherwise:

[[�]]trvio
df
= 0

[[⊥]]trvio
df
= 1

[[waitδ (C)]]trvio
df
= [[C]]tr	δ

vio

[[O≤δ (a)(C1,C2)]]
tr
vio

df
=

∑T∈occurancesa(tr)
∫ δ

0 absencetr(a, t)⊗T (t)⊗ [[C1]]
tr\{(a,T)}	t
vio dt

⊕ absencetr(a,δ)⊗ [[C2]]
tr	δ
vio

[[F≤δ (a)(C1,C2)]]
tr
vio

df
= [[O≤δ (a)(C1,C2)]]

tr
vio

[[μX .C]]trvio
df
= [[C[X\μX .C]]]trvio

Provided that all uses or recursion are guarded (i.e. the recursion variable occurs
after an obligation, prohibition or wait), the finite event horizon, and the finite size of

M.-E. Cambronero et al. / Timed Contract Compliance Under Event Timing Uncertainty36

the timed observations recorded in the trace guarantee termination of recursion, thus
ensuring that the semantics are well-defined.

4. Related Work

In the literature the use of fuzzy logic approaches for contracts are typically limited to
analysing possible observational continuations, e.g. computing the likelihood of future
failure given what has already been observed e.g. [10]. Even when encoded within the
logic, most work deals with a discrete time model. For instance, Figeri et al. [4] present
a temporal logic Fuzzy-time Temporal Logic (FTL), to express the temporal imprecision
allowing to express vague temporal notions such as soon. Crespo et al. [13] present
another work considering the extension of time constraints with fuzzy methods for timed
automata, while Alur et al. [14], extend timed automata with perturbed clocks.

In practically all these works discussed, it is worth noting that the fuzziness is typ-
ically dealt with at the logic level — the specification language or logic allows for the
expression of fuzzy notions of time. Our approach takes the dual view, and assigns fuzzi-
ness to the timing of the observations. In terms of expressivity, the two approach seem
to be equally expressive. However, we believe that our approach is more appropriate in
a deontic setting. For instance, consider trying to regulate a speed limit of 30km/h in a
particular area. In order to enforce such a regulation, cameras are used, with imprecise
timers. Because of this imprecision, the police may decide to prosecute only those who
were observed driving at 40km/h or faster, since even taking into account the timing im-
precision, it can be ascertained that the speed limit was exceeded. If, however, the cam-
eras are replaced with more accurate ones, it may become viable to (fairly) prosecute
those exceeding just 35km/h. If we were to take the approach that fuzzy timing should
appear in the regulation itself, one would have to update the regulations whenever a cam-
era is changed to a more (or less) accurate one. In contrast, with our approach, the regula-
tion remains unchanged, “You may not exceed 30km/h”, but the uncertainty distributions
in the observations allow the calculation of the probability or likelihood of an observed
car to have actually been overspeeding.

5. Conclusions

We have proposed a fuzzy time trace semantics for violations of timed contracts. The
approach allows the factoring in of imprecise measurements when recording timestamps
of events (e.g. due to communication lag or due to unsynchronised clocks) while still
allowing the calculation of the likelihood of a violation of the contract actually having
taken place. In contrast to specification languages, where observational error is typically
encoded with the property or specification, in a deontic setting, we would like to keep a
canonical form of the regulating text, and factor in the error in the input trace. In practice,
such semantics can be used, for instance, to regulate financial transactions, where the
distributed nature of the interacting subsystems (account holder, receiver of funds, node
logging events, etc.) means that precise timing of events is virtually impossible.

As it stands, the work has a number of limitations which we are currently addressing.
On one hand, we would like to extend the timed deontic logic to include conjunction and

M.-E. Cambronero et al. / Timed Contract Compliance Under Event Timing Uncertainty 37

choice over contracts, thus widening its expressivity. Furthermore, the approach we have
presented in this paper places no constraint on the form of the time-stamp distribution
functions, resulting in the semantics being of limited practical use due to difficulty in
computing them. We are, however, exploring limiting these functions (e.g. limiting time-
stamp distribution functions to trapezoidal shaped ones), in order to be able to compute
the results of the semantics automatically.

References

[1] Jan M. Broersen, Frank Dignum, Virginia Dignum, and John-Jules Ch. Meyer. Designing a de-
ontic logic of deadlines. In 7th International Workshop on Deontic Logic in Computer Science,
DEON 2004, Madeira, Portugal, May 26-28, 2004. Proceedings, pages 43–56, 2004.

[2] Marı́a Emilia Cambronero, Luis Llana, and Gordon J. Pace. A timed contract-calculus. Technical
Report CS-2017-02, Department of Computer Science, University of Malta, 2017.

[3] Enrique Martı́nez, Marı́a-Emilia Cambronero, Gregorio Dı́az, and Gerardo Schneider. Timed au-
tomata semantics for visual e-contracts. In Proceedings Fifth Workshop on Formal Languages and
Analysis of Contract-Oriented Software, FLACOS 2011, Málaga, Spain, 22nd and 23rd Septem-
ber 2011, 2011.

[4] Achille Frigeri, Liliana Pasquale, and Paola Spoletini. Fuzzy time in LTL. CoRR, abs/1203.6278,
2012.

[5] Martin Leucker and César Sánchez. Regular Linear Temporal Logic, pages 291–305. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[6] Joaquin Perez, Jaime Jimenez, Asier Rabanal, Armando Astarloa, and Jesús Lázaro. Ftl-
cfree: A fuzzy real-time language for runtime verification. IEEE Trans. Industrial Informatics,
10(3):1670–1683, 2014.

[7] Barbara Pernici and Seyed Hossein Siadat. Selection of service adaptation strategies based on
fuzzy logic. In SERVICES, pages 99–106, 2011.

[8] Anderson Francisco Talon and Edmundo Roberto Mauro Madeira. Comparison between light-
weight and heavy-weight monitoring in a web services fuzzy architecture. Procedia Computer
Science, 64 (Complete):862–869, 2015.

[9] Anderson Francisco Talon and Edmundo Roberto Mauro Madeira. Improvement of e-contracts
accomplishments by self-adaptive fuzzy architecture. In 2015 IEEE International Conference on
Services Computing, SCC 2015, New York City, USA, 2015, pages 507–514, 2015.

[10] Anderson Francisco Talon and Edmundo Roberto Mauro Madeira. A fuzzy scheduling mecha-
nism for a self-adaptive web services architecture. In ICEIS 2017 - Proceedings of the 19th Inter-
national Conference on Enterprise Information Systems, Volume 1, Porto, Portugal, April 26-29,
2017, pages 529–536, 2017.

[11] E.P. Klement, Radko Mesiar and Endre Pap. Triangular Norms. Springer Netherlands, 2000.
[12] Anderson Francisco Talon, Edmundo Roberto Mauro Madeira, and Maria Beatriz Felgar

de Toledo. Self-adaptive fuzzy architecture to predict and decrease e-contract violations. In 2014
Brazilian Conference on Intelligent Systems, BRACIS 2014, Sao Paulo, Brazil, October 18-22,
2014, pages 294–299, 2014.

[13] F. Javier Crespo, Alberto de la Encina and Luis Llana, Fuzzy-Timed Automata, in the Proceedings
of Formal Techniques for Distributed Systems 2010, Springer Berlin Heidelberg 2010.

[14] Rajeev Alur, Salvatore La Torre, and P. Madhusudan, Perturbed Timed Automata, in Lecture
Notes in Computer Science: Hybrid Systems: Computation and Control 3414, 2005.

[15] Rajeev Alur, Salvatore La Torre, and P. Madhusudan. Perturbed timed automata. In Hybrid Sys-
tems: Computation and Control, 8th International Workshop, HSCC 2005, Zurich, Switzerland,
March 9-11, 2005, Proceedings, pages 70–85, 2005.

[16] Alexandre Donzé and Oded Maler. Robust satisfaction of temporal logic over real-valued signals.
In Formal Modeling and Analysis of Timed Systems - 8th International Conference, FORMATS
2010, Klosterneuburg, Austria, September 8-10, 2010. Proceedings, pages 92–106, 2010.

[17] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science, 410(42):4262 – 4291, 2009.

M.-E. Cambronero et al. / Timed Contract Compliance Under Event Timing Uncertainty38

