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Abstract. We explore how deep learning methods can be used for contract ele-
ment extraction. We show that a BILSTM operating on word, POS tag, and token-
shape embeddings outperforms the linear sliding-window classifiers of our previ-
ous work, without any manually written rules. Further improvements are observed
by stacking an additional LSTM on top of the BILSTM, or by adding a CRF layer
on top of the BILSTM. The stacked BILSTM-LSTM misclassifies fewer tokens, but
the BILSTM-CRF combination performs better when methods are evaluated for their
ability to extract entire, possibly multi-token contract elements.
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1. Introduction

Law firms, companies, government agencies etc. need to monitor contracts for a wide
range of tasks [1]. For example, law firms need to inform their clients when contracts are
about to expire or when they are affected by legislation changes. Contractors need to keep
track of agreed payments and deliverables. Law enforcement agencies may need to focus
on contracts involving particular parties and large payments. Many of these tasks can be
automated by extracting particular contract elements (e.g., termination dates, legislation
references, contracting parties, agreed payments). Contract element extraction, however,
is currently performed mostly manually, which is tedious and costly.

We recently released a benchmark dataset of approximately 3,500 English contracts,
annotated with 11 types of contract elements, the largest publicly available dataset for
contract element extraction.1 Using that dataset, in previous work [2] we experimented
with Logistic Regression [3] and linear Support Vector Machines (SVMs) [4], both oper-
ating on fixed-size sliding windows of tokens, represented using hand-crafted features,
pre-trained word embeddings [5,6], and/or pre-trained part-of-speech (POS) tag embed-
dings. We also experimented with manually written rules that replaced the machine learn-
ing classifiers or post-processed their decisions. In this paper, we experiment with deep
learning methods [7,8] on the same dataset. We show that a bidirectional LSTM (BILSTM)
[9,10,11] operating on word, POS tag, and token-shape embeddings outperforms the best
methods of our previous work, in most cases, without using any manually written rules.
Further improvements are observed by stacking an additional LSTM on top of the BIL-

1The dataset is available from http://nlp.cs.aueb.gr/publications.html.
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STM [12,13] or by adding a Conditional Random Field (CRF) layer [14] on top of the
BILSTM [15,16,17]. The stacked BILSTM-LSTM misclassifies fewer tokens, but the BIL-
STM-CRF combination performs better when methods are evaluated for their ability to
extract entire, possibly multi-token contract elements.

2. Contract Element Extraction Methods

The dataset of our previous work specifies particular extraction zones for each contract
element type [2]. For example, contracting parties are to be extracted from the cover page
and preamble of each contract, whereas legislation references are to be extracted from
zones starting up to 20 tokens before and ending up to 20 tokens after each occurrence of
words like “act” or “treaty” in the main text. The extraction zones are explicitly marked
in each training and test contract of the dataset, and can be easily produced in practice
(e.g., using regular expressions). We use the same extraction zones in this paper.

We also use the pre-trained 200-dimensional word embeddings and 25-dimensional
POS tag embeddings that accompany the dataset [2], which were obtained by applying
WORD2VEC (skip-gram model) [18] to approximately 750,000 unlabeled and 50,000
POS-tagged English contracts, respectively. We also use 5-dimensional token shape
embeddings that represent the following seven possible shapes of tokens: token con-
sisting of alphabetic upper case characters, possibly including periods and hyphens
(e.g., ‘AGREEMENT’, ‘U.S.’, ‘CO-OPERATION’); token consisting of alphabetic lower
case characters, possibly including periods and hyphens (e.g., ‘registered’, ‘etc.’, ‘third-
party’); token with at least two characters, consisting of an alphabetic upper case first
character, followed by alphabetic lower-case characters, possibly including periods and
hyphens (e.g., ‘Limited’, ‘Inc.’, ‘E-commerce’); token consisting of digits, possibly in-
cluding periods and commas (e.g., ‘2009’, ‘12,000’, ‘1.1’); line break; any other to-
ken containing only non-alphanumeric characters (e.g., ‘$’, ‘##’); any other token (e.g.,
‘3rd’, ‘strangeTek’, ‘EC2’). The token shape embeddings were obtained by applying
WORD2VEC (again, skip-gram model, same other settings) to approx. 2,000 contracts
of the unlabeled dataset of our previous work [2], after replacing the tokens by pseudo-
tokens (e.g., ‘allupper’, ‘alllower’) reflecting the corresponding token shape.2

As already noted, in our previous work we experimented with linear classifiers (Lo-
gistic Regression and linear SVMs) operating on fixed-size sliding windows of tokens.
We also experimented with manually written rules that replaced the linear classifiers or
post-processed their decisions. Those methods are described in detail in our previous
work [2]. Below we describe the new, LSTM-based methods we experimented with. We
do not consider manually written rules in any detail, because in most cases the LSTM-
based methods outperform our previous methods (with or without rules) without employ-
ing any rules. As in our previous work, for each LSTM-based method we build a separate
extractor for each contract element type (e.g., contracting parties), 11 extractors in total
per method, which allows us to compare directly against our previous results.3

2To by-pass privacy issues, in the dataset each token is replaced by a unique integer identifier, but hand-
crafted features, word, and POS tag embeddings are still provided for each token [2]. The new token shape
embeddings will also be made publicly available. We use no hand-crafted features in this paper.

3The LSTM-based methods were implemented using KERAS (https://keras.io/) with a TENSORFLOW

backend (https://www.tensorflow.org/).
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Figure 1. BILSTM-(LSTM)-LR extractor for a particular contract element type.

2.1. BILSTM-LR Extractors

In the first LSTM-based method, called BILSTM-LR, each extractor (Fig. 1, without the
upper LSTM boxes) uses its own bidirectional LSTM (BILSTM) chain [12] to convert the
concatenated word, POS tag, and token shape embeddings of each token (lower MERGE

boxes) of an extraction zone to context-aware token embeddings (upper MERGE boxes).
Each context-aware token embedding is then passed on to a Logistic Regression (LR)
layer (DENSE boxes and sigmoid ovals) to estimate the probability that the corresponding
token is positive (e.g., part of a contracting party element) with respect to the contract
element type of the particular extractor.

We use 300-dimensional hidden states in both LSTM chains. Larger dimensionali-
ties slow down our experiments, without noticeable efficacy improvements. We employ
LSTM cells with input, forget, and output gates [9,10,19], with DROPOUT [20] after the
merged embeddings and before the LR layer (Fig. 1). We used Glorot initialization [21],
binary cross-entropy loss, and the Adam optimizer [22] to train each BILSTM-LR ex-
tractor, with early stopping examining the validation loss. The DROPOUT rate, learning
rate, and batch size (possibly different per contract element type) were tuned performing
a 3-fold cross-validation on 80% of the training extraction zones (of the corresponding
contract element type), using one third of the 80% of the training extraction zones as
a validation set in each fold. Having selected DROPOUT rate, learning rate, and batch
size (per contract element type), each BILSTM-LR extractor was re-trained on the entire
80% of the training extraction zones, using the remaining 20% as a validation set. Out of
vocabulary words, meaning words we had no pre-trained embeddings for, were mapped
to random embeddings, as in our previous work. At test time, each token is classified as
positive if the corresponding probability of the LR layer (Fig. 1) exceeds 0.5.
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2.2. BILSTM-LSTM-LR Extractors

The second LSTM-based method, BILSTM-LSTM-LR, is the same as the previous one,
except that it has an additional LSTM chain (upper LSTM boxes in Fig. 1) between the
context-aware token embeddings (MERGE (600) boxes) of the lower BILSTM chain, and
the logistic regression (LR) layer (DENSE boxes and sigmoid ovals). Stacking LSTM (or
BILSTM) chains has been reported to improve efficacy in several linguistic tasks [13,23]
at the expense of increased computational cost. To reduce the computational cost, it is
common to make the stacked LSTM chains unidirectional, rather than bidirectional [23].
Hyper-parameter tuning and training are performed as in BILSTM-LR (Section 2.1).

2.3. BILSTM-CRF Extractors

In the third LSTM-based method, BILSTM-CRF, we replace the upper LSTM chain and
the LR layer of the BILSTM-LSTM-LR extractor (upper LSTM and DENSE boxes, sigmoid
ovals of Fig. 1) by a linear-chain Conditional Random Field (CRF). CRFs [14] have been
widely used in sequence labeling (e.g., POS tagging, named entity recognition). They
have also shown promising results on top of LSTM, BILSTM, or feed-forward neural
network layers in sequence labeling [24,25,15,16,17] and parsing [26]. In our case, the
CRF layer jointly selects the assignment of positive or negative labels to the entire token
sequence of an extraction zone, which allows taking into account the predicted labels of
neighboring tokens. For example, if both the previous and the next token of the current
token are classified as parts of a legislation reference, this may be an indication that the
current token is also part of the same legislation reference.

Again, we train a separate BILSTM-CRF extractor per contract element type. Train-
ing combines dynamic programming or beam search decoding with backpropagation to
maximize log-likelihood [25,26].4 Hyper-parameter tuning and training are performed as
in the previous methods. We note that in tasks with richer sets of labels, as opposed to our
only two labels (‘positive’, ‘negative’), a CRF layer may be more beneficial. For example,
in POS tagging [15,17] a CRF layer can learn that a determiner is usually followed by an
adjective or noun, rather than a verb. One way to enrich our label set would be to use a
single classifier for all the contract element types. This would be complicated, however,
by the fact that contract elements of different types may have different extraction zones.

3. Experimental Results

We performed two groups of experiments, reported in turn below, where the methods of
Section 2 where evaluated per token and contract element, respectively.

3.1. Evaluation per Token

In the first group of experiments, we evaluated the methods by considering their decisions
per token. For each contract element type (e.g., contracting parties), we measured the

4We use the CRF layer implementation of KERAS-CONTRIB (https://github.com/farizrahman4u/
keras-contrib/blob/master/keras_contrib/layers/crf.py), with joint conditional log-likelihood
optimization and Viterbi best path prediction (decoding).
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ELEMENT SW-LR-ALL SW-SVM-ALL BILSTM-LR BILSTM-LSTM-LR BILSTM-CRF

TYPE P R F1 P R F1 P R F1 P R F1 P R F1

Title 0.91 0.91 0.91 0.91 0.91 0.91 0.95 0.93 0.94 0.94 0.95 0.95 0.96 0.95 0.95

Parties 0.92 0.85 0.89 0.92 0.87 0.89 0.97 0.92 0.95 0.97 0.94 0.95 0.98 0.92 0.95

Start 0.79 0.96 0.87 0.78 0.96 0.86 0.91 0.97 0.94 0.93 0.97 0.95 0.92 0.98 0.95

Effective 0.71 0.63 0.67 0.67 0.79 0.72 0.98 0.92 0.95 0.97 0.96 0.97 0.95 0.89 0.92

Termination 0.68 0.86 0.76 0.54 0.95 0.69 0.65 0.90 0.75 0.70 0.92 0.79 0.65 0.93 0.77

Period 0.61 0.74 0.67 0.55 0.83 0.66 0.44 0.82 0.57 0.47 0.86 0.59 0.55 0.85 0.65

Value 0.70 0.56 0.62 0.68 0.61 0.64 0.74 0.55 0.63 0.74 0.63 0.68 0.72 0.60 0.66

Gov. Law 0.92 0.96 0.94 0.91 0.97 0.94 0.98 0.98 0.98 0.99 0.98 0.98 0.99 0.97 0.98

Jurisdiction 0.86 0.77 0.81 0.82 0.82 0.82 0.90 0.89 0.89 0.90 0.88 0.89 0.90 0.88 0.88

Legisl. Refs. 0.84 0.83 0.83 0.83 0.88 0.86 0.82 0.95 0.88 0.83 0.94 0.88 0.82 0.94 0.87

Headings 0.71 0.92 0.80 0.71 0.92 0.80 0.98 0.97 0.98 0.99 0.98 0.98 0.99 0.97 0.98

Macro-average 0.79 0.82 0.80 0.76 0.86 0.80 0.85 0.89 0.86 0.86 0.91 0.87 0.86 0.90 0.87

Table 1. Precision (P), Recall (R), and F1 score, measured per token. Best results per contract element type
shown in bold font in gray cells.

performance of each method in terms of precision (P = TP
TP+FP ), recall (R = TP

TP+FN ), and
F1 score (F1 = 2·P·R

P+R ). Here, true positives (TP) are tokens correctly classified as parts
of contract elements of the considered type, false positives (FP) are tokens incorrectly
classified as parts of contract elements of the considered type, and false negatives (FN)
are tokens incorrectly classified as not parts of contract elements of the considered type.
F1 (harmonic mean) is commonly used to combine precision and recall.

Table 1 lists the results of this group of experiments. The best results per contract
element type are shown in bold font in gray cells. The macro-averages are the averages
of the corresponding columns, indicating the overall performance of each method on all
the contract element types. The best methods of our previous work in these experiments
[2] are SW-LR-ALL and SW-SVM-ALL, which use hand-crafted features, word, and POS

tag embeddings, with LR or SVM classifiers operating on fixed-size windows of tokens.
Overall, both of these methods perform equally well (0.80 macro-averaged F1).

The three LSTM-based methods overall perform clearly better than the linear sliding-
window classifiers of our previous work. Even BILSTM-LR, the simplest of the three
LSTM-based methods, exceeds the macro-averaged F1 score of the best previous methods
by 6 points (0.86 vs. 0.80). The extra LSTM layer of BILSTM-LSTM-LR improves the
macro-averaged F1 score by only 1 point (0.87). By looking at the results for individual
contract element types, however, we see that BILSTM-LSTM-LR obtains top F1 scores
for all but one contract element types (the exception being contract periods), and for
some element types (most notably, termination dates and contract values) it performs
significantly better than BILSTM-LR (0.79 vs. 0.75, and 0.68 vs. 0.63 F1, respectively).
Although BILSTM-CRF has the same macro-averaged F1 as BILSTM-LSTM-LR (0.87), it
does not perform better than BILSTM-LSTM-LR in any contract element type, except for
contract periods, where it outperforms BILSTM-LSTM-LR (0.65 vs. 0.59 F1). The best F1
for contract periods, however, is achieved by SW-LR-ALL (0.67); SW-SVM-ALL (0.66 F1)
also exceeds the F1 score of BILSTM-CRF (0.65) for contract periods.

The lowest F1 scores of all three LSTM-based methods are for contract periods, ter-
mination dates, and contract values, which are the three contract element types with
the fewest training instances in the dataset [2]. The performance of the best sliding-
window methods (SW-LR-ALL, SW-SVM-ALL) is close to or better than the performance
of BILSTM-LR (the weakest LSTM-based method) in these three contract element types;
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and both BILSTM-LSTM-LR and BILSTM-CRF show some of their biggest improvements
compared to the simpler BILSTM-LR in these three types.

It seems that the LSTM-based methods perform poorly for contract element types
with few training instances, to the extent that the best linear sliding-window classifiers
are able to catch up. Nevertheless, the extra layer of BILSTM-LSTM-LR and the CRF layer
of BILSTM-CRF are particularly beneficial in contract element types with few training
instances, leading to significant performance improvements compared to BILSTM-LR.
We can only speculate that the additional LSTM layer of BILSTM-LSTM-LR may lead
to better generalization, and that the CRF layer may in effect introduce an additional
training signal by allowing BILSTM-CRF to consider more directly the predicted labels
of neighboring tokens.

3.2. Evaluation per Contract Element

In the second group of experiments, the methods were evaluated for their ability to iden-
tify entire contract elements. By contrast, the linear sliding-window classifiers and the
LSTM-based methods classify individual tokens as positive or negative with respect to a
particular contract element type. For the experiments of this section, each (maximal) se-
quence of consecutive tokens predicted to be positive with respect to a contract element
type (e.g., consecutive tokens predicted to be parts of contracting parties) is treated as
a single predicted contract element of the corresponding type (e.g., a single contracting
party), and similarly for the gold annotations, as in our previous work [2].

For each contract element type (e.g., contracting parties), the strictest evaluation
would now count as true positives only the predicted contract elements that match exactly
gold ones, and similarly for false positives and false negatives. For example, if a method
predicted “Sugar 13” to be a contracting party, missing the “Inc.” of the gold “Sugar 13
Inc.”, the predicted ‘Sugar 13’ would be a false positive and the gold “Sugar 13 Inc.”
would be a false negative. In practical applications, however, it often suffices to produce
contract elements that are almost the same as the gold ones. As in our previous work, we
set a threshold t ∈ [0.8,1.0] for each contract element type (based on requirements of our
clients, the same as in the experiments of our previous work) and we consider a predicted
contract element as true positive (TP) if (1) it is a substring of a gold contract element (of
the same type) and the length of the predicted element (in characters, excluding white
spaces) is at least t% of the length of the gold one, or vice versa (2) a gold contract
element is a substring of the predicted one and the length of the gold element is at least
t% of the length of the predicted one. Otherwise the predicted contract element is a false
positive (FP); and the corresponding gold element is a false negative (FN), unless it
matches another predicted element of the same type.5 Precision, recall, and F1 are then
defined as in Section 3.1, but now using the definitions of TP, FP, FN of this paragraph.

Table 2 lists the results of the second group of experiments. We now include the
manually crafted post-processing rules of our previous work [2] in the best linear slid-
ing window classifiers, since they improve significantly their performance, as reported
in our previous work.6 The simplest LSTM-based method, BILSTM-LSTM-LR, equals the

5The values of t are: 1.0 for start, effective, termination dates; 0.9 for governing law and clause headings;
0.8 for other contract element types.

6The post-processing rules cannot be used when evaluating per token (Section 3.1), because they require
multi-token contract elements to have been grouped into single contract elements, as in this section.
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ELEMENT SW-LR-ALL-POST SW-SVM-ALL-POST BILSTM-LR BILSTM-LSTM-LR BILSTM-CRF

TYPE P R F1 P R F1 P R F1 P R F1 P R F1

Title 0.84 0.93 0.88 0.83 0.93 0.88 0.96 0.94 0.95 0.95 0.95 0.95 0.97 0.95 0.95

Parties 0.96 0.85 0.90 0.95 0.85 0.89 0.98 0.89 0.93 0.96 0.91 0.94 0.99 0.87 0.93

Start 0.89 0.94 0.91 0.84 0.93 0.88 0.88 0.96 0.92 0.92 0.95 0.93 0.93 0.96 0.94

Effective 0.86 0.80 0.83 0.87 0.95 0.91 0.99 0.89 0.94 0.94 0.94 0.94 0.95 0.86 0.90

Termination 0.79 0.91 0.85 0.75 0.96 0.84 0.73 0.89 0.80 0.72 0.91 0.81 0.74 0.98 0.84

Period 0.62 0.85 0.72 0.51 0.80 0.63 0.40 0.71 0.51 0.44 0.75 0.55 0.62 0.79 0.70

Value 0.74 0.92 0.82 0.72 0.94 0.81 0.66 0.67 0.67 0.75 0.72 0.73 0.70 0.78 0.74

Gov. Law 0.99 0.93 0.96 0.99 0.95 0.97 0.98 0.97 0.97 0.99 0.97 0.98 0.99 0.96 0.97

Jurisdiction 0.99 0.75 0.85 0.98 0.78 0.87 0.90 0.85 0.88 0.92 0.82 0.86 0.93 0.85 0.89

Legisl. Refs. 0.97 0.88 0.92 0.97 0.90 0.94 0.86 0.94 0.90 0.87 0.93 0.90 0.92 0.94 0.93

Headings 0.94 0.80 0.86 0.94 0.80 0.86 0.99 0.89 0.94 0.99 0.89 0.94 0.99 0.88 0.94

Macro-average 0.87 0.87 0.86 0.85 0.89 0.86 0.85 0.87 0.86 0.86 0.89 0.87 0.88 0.89 0.88

Table 2. Precision (P), Recall (R), and F1 score, measured per contract element instance. Best results per
contract element type shown in bold font in gray cells.

macro-averaged F1 score (0.86) of the best linear sliding-window classifiers (SW-LR-
ALL-POST, SW-SVM-ALL-POST), without using any manually written rules, unlike the
sliding-window classifiers that rely extensively on the post-processing rules in these ex-
periments; without the post-processing rules, the macro-averaged F1 score of the best
linear sliding window classifiers (SW-LR-ALL, SW-SVM-ALL) drops to 0.69 (not shown
in Table 2, see our previous work). This is particularly important, because the post-
processing rules are very difficult to maintain in practice, since they have to be tailored
to the errors of each particular classifier per contract element type.

The extra LSTM layer of BILSTM-LSTM-LR improves the macro-averaged F1 of
BILSTM-LR by one point (0.87 vs. 0.86), but BILSTM-CRF now performs even better
overall (0.88 macro-averaged F1). By looking at the F1 scores per contract element type,
we see that BILSTM-CRF now performs better or at least as well as BILSTM-LR in all but
one contract element types, the exception being effective dates where BILSTM-LR is bet-
ter (0.94 vs. 0.90 F1). In several contract element types, the improvements of BILSTM-
CRF compared to BILSTM-LR are very significant, with the largest improvements ob-
served in contract periods (from 0.51 to 0.70 F1), contract values (from 0.67 to 0.74),
and termination dates (from 0.80 to 0.84). Recall that these are the three contract element
types with the fewest training instances in the dataset. As in the experiments of the previ-
ous section, they are also the contract element types where all the LSTM-based methods
again obtain their lowest F1 scores, and where the linear sliding-window classifiers catch
up with or exceed (in the case of SW-LR-ALL-POST) the LSTM-based methods. The ex-
tra LSTM layer of BILSTM-LSTM-LR also improves the performance of BILSTM-LR in
these three contract element types (from 0.51 to 0.55, from 0.80 to 0.81, and from 0.67
to 0.72, respectively), but the improvements are smaller compared to those of BILSTM-
CRF. Like BILSTM-CRF, BILSTM-LSTM-LR improves or matches the F1 of BILSTM-LR in
all but one of the eleven contract element types, the exception being jurisdiction, where
BILSTM-LR is better (0.88 vs. 0.86 F1), but the improvements are smaller compared to
those of BILSTM-CRF. Overall, BILSTM-CRF appears to be better than BILSTM-LSTM-LR

in the experiments of this section, in contrast to the experiments of the previous section,
suggesting that although BILSTM-LSTM-LR makes fewer errors per token, the errors of
BILSTM-CRF are less severe, in the sense that the thresholds t allow more of the extracted
contract elements of BILSTM-CRF to be considered as successfully extracted.
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4. Related Work

Our previous work [2] provides an extensive overview of related work, concluding that
previous text analytics work on contracts [27,28,29] focused on classifying entire lines,
sentences, or clauses, rather than extracting specific contract elements, and used much
smaller datasets or fewer classes. In the broader legal text analytics context, our previous
work concludes that the closest related work considered segmenting legal (mostly leg-
islative) documents [30,31,32,33,34,35] and recognizing named entities [36,35], but the
proposed methods are not directly applicable to contract element extraction; for example,
they employ hand-crafted features, patterns, or lists of known entities that would have to
be tailored for contracts.

More recently, Garcia-Constantino et al. [37] experimented with 97 “legal docu-
ments related to commercial law”, apparently contracts or documents similar to con-
tracts, aiming to identify the sections, subsections, appendices etc. of each document,
and to extract the date of each document, the names of the parties involved, the govern-
ing law, and jurisdiction. No machine learning was involved. Instead, manually crafted
pattern-matching rules were employed.

Deep learning methods have recently been successfully applied to sequence labeling
tasks. For example, Ling et al. [38] used a BILSTM layer operating on characters to
construct morphology-aware word embeddings, which were combined with WORD2VEC

embeddings and passed on to another LSTM or BILSTM layer (with a softmax), to perform
language modeling or POS tagging, respectively. Lample et al. [16] experimented with
a similar method in named entity recognition, adding a CRF layer, and reporting that an
alternative method that involved stacked LSTMs performed worse. Ma and Hovy [17]
used a convolutional neural network (CNN) to obtain word embeddings from characters;
the word embeddings were subsequently fed to a BILSTM layer followed by a CRF layer
to perform POS tagging or named entity recognition. Huang et al. [15] experimented
with LSTM and BILSTM layers combined with CRF layers in POS tagging, chunking, and
named entity recognition. However, we are among the first to apply deep learning to legal
text analytics tasks; see also [39,40].

5. Conclusions and Future Work

Building upon our previous work, we explored how deep learning methods can be used
in contract element extraction. We showed that a BILSTM with a logistic regression layer
(BILSTM-LR), operating on pre-trained word, POS tag, and token-shape embeddings out-
performs in most cases the best methods of our previous work, which employed linear
classifiers operating on fixed-size windows of tokens, without employing any manually
written rules. Further improvements were observed by stacking an additional LSTM on
top of the BILSTM (BILSTM-LSTM-LR) or by adding a CRF layer on top of the BIL-
STM (BILSTM-CRF). Experimental results indicated that BILSTM-LSTM-LR misclassifies
fewer tokens, but that BILSTM-CRF performs better when methods are evaluated for their
ability to extract entire contract elements. Interestingly, the additional LSTM and CRF

layers were most beneficial in contract element types with few training instances.
Future work could explore if BILSTM-CRF can be improved further by using

additional stacked LSTM layers, or additional BILSTM or CNN layers to produce

I. Chalkidis and I. Androutsopoulos / A Deep Learning Approach to Contract Element Extraction162



morphologically-aware word embeddings [38,17]. We also plan to explore data augmen-
tation techniques [41], especially in contract element types with few training instances.
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