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Abstract We present a level set technique for 3D Magnetic Induction Tomo-
graphy with an emphasis on applications to the screening of small boxes up to cargo
containers. A level set method is used for modeling a shape evolution when minimi-
zing a given cost functional. Numerical results will be presented that illustrate the
performance of our method in practical situations. A novel line-search technique is
introduced that is suitable to control the shape evolution for this computationally
demanding MIT inverse problem.
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1. Introduction

Magnetic Induction Tomography (MIT) has found various applications in the nonde-
structive testing of materials, see for example [1,4,10] and the references cited there. Re-
cent progress in measurement and detector technology is opening up exciting new ap-
plications for this technology, for example in the security screening of small boxes up
to cargo containers [6,11]. Mathematically 3D MIT constitutes a highly ill-posed nonli-
near inverse problem where appropriate regularization and efficient reconstruction algo-
rithms are essential when facing realistic scenarios. Linearized models have been tested
(see for example [10]) but, even though being relatively fast, they quickly reach their
limitations regarding resolution and accuracy. Nonlinear schemes seem more promising,
even though they still are quite time-consuming and heavy on computer memory con-
sumption. Tailor-made approaches for specific reconstruction, identification and classifi-
cation tasks are needed for circumventing some of these difficulties. As part of this effort,
shape-based techniques for identifying and characterizing hidden objects are developed
here that make use of available prior knowledge or assumptions on the materials present
in the region of interest. Mathematically this approach has been investigated in [1,7],
amongst others. In our contribution we will follow up on this approach and investigate
shape based methods for MIT of boxes or containers using a level-set framework [3].
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Figure 1. Left: geometric setup of emitters and receivers (here all horizontal coils) around a box-shaped region
of interest. Right: cartoon in 2D showing evolution of a level set function for shape propagation.

2. The shape reconstruction problem

2.1. The forward problem

For modelling electromagnetic fields inside the box of interest we use the system of
Maxwell’s equations in frequency domain

∇×E j(x) − a(x)H j(x) =M j(x) (1)

∇×H j(x) − b(x)E j(x) = J j(x) (2)

in a box-shaped domain Ω ⊂ IR3, where we imply a time-dependence e−iωt for a given
frequency ω = 2π f . In this study we will assume that the parameter a(x) = iωμ(x) is
known and constant with typical (e.g. free space) values in real and imaginary part. Furt-
hermore, the parameter of interest b(x) =σ(x) − iωε(x) is ‘shape-based’ in the sense that
it chooses at each location x in the domain between either an ‘internal value’ bi(x) or
an ‘external value’ be(x), both being given as known and fixed functions of x. This way
b(x) contains discontinuities along closed interfaces Γ ⊂ Ω that become now the unkno-
wns of our inverse problem. For example, bi might indicate some ‘threat’ and be some
background material of which the specific nature is of no particular interest.

The index j in (1), (2) indicates the different applied source patterns q j = (M j,J j)T ,
j = 1, . . . , p, for creating the electromagnetic fields. Generalizations of this basic assump-
tion will be addressed in our future research.

In the inverse problem of MIT one is interested in estimating the unknown parameter
b from experimentally measured (or simulated noisy) data. In our case, this reduces to
the estimation of the interface Γ between internal and external profiles. Practically, we
introduce a sufficiently smooth level set function φ : Ω → IR which defines the shape S
by

b(x) = Π(φ)(x) =
{

bi(x) in S where φ(x) ≤ 0,
be(x) in Ω\S where φ(x) > 0. (3)

The interface Γ = ∂S is given by the zero level set ∂S = {x ∈ Ω : φ(x) = 0}. See the right
image of Figure 1 for a visualization of the level set scheme. In our (proof-of-concept
style) setup we assume for simplicity that we have p different sources q j, j = 1, . . . , p,
modelled by reasonably sized wire loops or coils (see the left image of Figure 1) located
at the bottom of the box or container. Those give rise to the probing fields E j and H j. The
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calculated data are g j(b)=M jE j where E j, H j solve (1), (2) with parameter b and where
M j is a (linear) measurement operator which might depend on the source position. In
our case, M jE j are the line integrals of the electric fields along receiving closed wire
loops or coils distributed along the four vertical edges of the box (see again Figure 1).
We denote the actually measured (or ’true’) data by g̃ j. Then, the residuals R j(b) and
T j(φ) are defined as R j(b) = g j(b)− g̃ j and T j(φ) = R j(Π(φ)).

2.2. Gradient calculations by an adjoint scheme

Defining the least squares cost functionals

J j(b) =
1
2

∥∥∥R j(b)
∥∥∥2

2, and Ĵ j(φ) =
1
2

∥∥∥T j(φ)
∥∥∥2

2 (4)

and the total cost by

J(b) =
p∑

j=1

J j(b) and Ĵ(b) =
p∑

j=1

Ĵ j(b) (5)

we call gradJ j,L2
(b) = R′j(b)∗R j(b) and gradĴ j,L2

(φ) = T ′
j (φ)

∗T j(φ) the gradient di-
rections of expressions in (4) and similar for those in (5). Notice that these gradient di-
rections will depend on the choice of function spaces for the parameter functions b and
level set functions φ, as indicated in the notation. This will be used when selecting our
regularization scheme for the inversion. We have the following adjoint representation of
gradJ j,L2

(b) as shown for example in [2].

Let Ea
j and Ha

j be the solution of the following (adjoint) system of Maxwell’s equa-
tions:

∇×Ea
j (x)−a(x)Ha

j (x) = 0 (6)

∇×Ha
j (x)−b(x)Ea

j (x) =M∗
jR j(b) (7)

where M∗
j denotes the formal adjoint of the measurement operator M j. Its application

amounts to putting the argument (hereR j(b)) as artificial ‘adjoint sources’ at the receiver
locations. The overline denotes ‘complex conjugate’. Then we have[

R′j(b)∗R j(b)
]
(x) = E j(x) ·Ea

j (x) (8)

where E j and H j are the solution of (1), (2) with b.

Formal differentiation by the chain rule yields T ′
j (φ) = R

′
j(Π j(φ))Π′j(φ). We have

Π′j(φ) = (bi−be)δ(φ). However, the Dirac delta distribution δ(φ) will be considered to be
approximated by a suitable L2-function. In our numerical implementations, we will use
the narrowband function of thickness d for that purpose. In other words, δ(φ) ≈ χBd(Γ)
with Bd(Γ) = {x : dist(x,Γ) ≤ d/2} and χD denoting the characteristic function of the set
D. We have T ′

j (φ)
∗ = Π′j(φ)

∗R′j(Π(φ))∗.
Notice that so far no regularization scheme is applied in order to stabilize the inver-

sion. We will use a regularization scheme explained in more details in [3] which uses suit-
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able Sobolev spaces for the gradient calculation (sometimes called ‘Sobolev gradients’).
This has the effect of replacing the adjoint operator T ′(φ)∗ by a new adjoint operator
T ′

j (φ)
◦ with

T ′
j (φ)

◦ = (αI−βΔ)−1T ′
j (φ)

∗, gradĴ j,W1
(φ) = T ′

j (φ)
◦T j(φ) (9)

and suitably chosen parameters α, β controlling the degree of regularization. The positive
definite operator (αI−βΔ)−1 has the effect of ’projecting’ the gradient T ′

j (φ)
∗T j(φ) from

L2(Ω) towards a Sobolev space of smoother functions [3].

2.3. A Kaczmarz-type shape reconstruction algorithm

We have presented above gradient directions with respect to the individual cost functi-
onals J j(b) which only take into account the part of the complete data set which cor-
responds to source q j. The gradient direction which corresponds to the full data set
would be a vector whose components are the individual gradient directions gradĴ j,W1

(φ).
However, calculating this combined gradient vector in each step of an iterative recon-
struction technique is quite expensive in the case of 3D Maxwell’s equations. Therefore,
we have adopted in our inversion a single-step (‘Kaczmarz-type’) reconstruction scheme
which follows the general single-step idea of the nonlinear Algebraic Reconstruction
Technique (ART) as described in [8]. We perform so-called ’sweeps’ over the source
positions and only consider the information of one source at a time while calculating an
update by an efficient adjoint scheme.

2.4. A novel line search for the Kaczmarz-type shape reconstruction

We have equipped our algorithm with a novel line search strategy which automatically
adjusts step sizes at each sweep. First we need to mention that a strict line search as in
standard gradient based schemes (using for example a backtracking scheme with a Wolfe
or Armijo condition [9]) usually does not work well in a Kaczmarz type algorithm since
in each step we are only calculating gradients with respect to one of the p subsets of
the data (corresponding to one source position). Searching for a step size that minimizes
(4) just for the chosen j is not only computationally expensive but also might eradicate
some of the progress made when working on the equivalent expressions (4) in previous
steps (addressing the other p−1 data subsets). A way out is to adopt a step size criterion
that guarantees a smooth overall evolution of the shape where each individual update
necessarily needs to be sufficiently small in order to preserve previous updates from
the other data subsets. In particular, with step sizes chosen to be small, any additional
forward solves need to be avoided in the corresponding step size selection process in
order not to increase further the already demanding overall computational cost.

Notice that the avoidance of additional forward solves makes it technically difficult
to monitor the evolution of (5) accurately. We obtain an approximation to (5) by recor-
ding values of (4) in each individual step as a by-product of gradient calculation (without
adding any forward calculation) and plugging those values into the summation (5) at the
end of each sweep. Thereby all forward solves actually contribute to an update, and no
forward solve is ‘wasted’ just for monitoring the evolution of (5). This also means that
we do not enforce a reduction of the cost (4) (or (5)) in a given step.
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Instead, in order to maintain control of convergence of our algorithm, we record
the number N j of voxels that change value (from bi(x) to be(x) or vice versa) in each
update. Our aim is to control this number by an inexpensive backtracking line search.
Following general ideas of a standard backtracking line search, our goal is to define an
interval Itarget = [Nin f ,Nsup] of values such that N j ∈ Itarget in each update. Nin f is chosen
to guarantee that sufficient progress is made in each step, and Nsup is chosen to make
sure that we are not ‘overshooting’ in the above described sense. We choose the step size
γ j (see the pseudo-code further below) by a traditional backtracking line search, starting
with γstart sufficiently large, where however no forward solves are required. For each of
the probed γ we neither have to calculate (4) nor (5), but only the corresponding N j,
which is done ‘on the fly’.

Implementing this backtracking line search is not difficult, but there remains the
question of how to choose γstart. Maybe surprisingly, in our experience the performance
of the line search in this particular application of 3D MIT actually depends critically on a
clever and dynamic choice of γstart in each sweep! If it is chosen fixed and very large then
the backtracking scheme will always stop just below Nsup, giving low sensitivity source-
sensor pairs the same impact on shape evolution as high-sensitivity pairs. This can lead
to a diverging algorithm overall. If it is chosen fixed and small, then the shape evolution
might become either extremely slow at certain stages of the algorithm or again (choosing
now always values N j just above Nin f ) insensitive to the actual sensitivity pattern of the
experimental setup.

Therefore we have introduced a dynamic correction of γstart after each sweep, en-
forcing that the average number of voxels N = (

∑p
j=1 N j)/p that change value per step

in each sweep remains inside a smaller interval [Nlow,Nhigh] with Nin f < Nlow < Nhigh <

Nsup. If N > Nhigh in some sweep, γstart is reduced by multiplying it with a value
τ1 ∈ [0.5,1.0[. If, on the other hand, N < Nlow in some sweep, then γstart is increased by
multiplying it with a value τ2 ∈]1.0,2.0]. This way we typically obtain a good spread of
N j in each sweep over the entire interval [Nin f ,Nsup] (after a short ‘burn-in phase’), ma-
king sure that more weight is given to high sensitivity source-receiver pairs (with respect
to the current shape boundary) than for low sensitivity source-receiver pairs.

A pseudo-code of the algorithm including the line search is presented in the table.

3. Numerical experiments

We will show two numerical experiments which demonstrate the performance of the ge-
neral shape-based 3D reconstruction algorithm as well as the novel line search technique
proposed in this paper.

The general experimental and computational setup is in both cases the same as dis-
played in Figure 1. However, the two experiments differ in the dimensions and probing
frequency chosen for the screening of the boxes. In Experiment 1 we aim at the screen-
ing of small to medium sized boxes where the size of the domain shown in Figure 1 is
2[m]×2[m]×2[m] and the frequency is f = 10 MHz. In Experiment 2 we want to screen
bigger sized boxes such as cargo containers, where the domain of interest is chosen to
be 10[m]×10[m]×10[m] and the frequency is f = 0.2 MHz. Notice that the computati-
onal domain is actually bigger than the domain of interest shown in Figure 1 since it is
surrounded by some outside material (e.g. air). Both, be and bi use constant free space
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Algorithm: Single step level set shape reconstruction technique

Initialization:

Specify initial level set function as a signed distance funtion φ(0);

Choose [Nin f ,Nsup], [Nlow,Nhigh], γstart , τ1, τ2 and put n = 0.

Reconstruction:

FOR m = 1 : M (loop over sweeps)

FOR j = 1 : p (loop over source positions)

Calculate gradĴ j ,W1
(φ(n)) = T ′

j (φ(n))◦T j(φ(n)) by (6)-(9)

Perform backtracking line search for step-size γ j

Update level set function: φ(n+1) = φ(n) −γ jgradĴ j ,W1
(φ(n))

Rescale φ(n+1) → ζφ(n+1) with scaling parameter ζ ∈ IR+.

END

Verify optional stopping criterion.

Adjust, if necessary, γstart for next sweep.

END

Figure 2. Shape and cost evolution vs sweep number in Numerical Experiment 1 (screening of small to me-
dium sized boxes).

values for ε and μ in (1), (2). The conductivity profiles of be and bi inside the box domain
are constant with values 0.1Sm−1 and 0.5Sm−1, respectively.

In our numerical experiments we are using a finite volume (FV) technique for mo-
delling (1), (2) similar to the one described in [5], but we are also experimenting with
an alternative approach using a Finite Differences Frequency Domain (FDFD) technique
similar to the one described in [2]. All data are simulated with the same forward model-
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Figure 3. Evolution of N (upper image) and γ j (lower image) vs sweep number in Numerical Experiment 1.

ling code as used in the reconstruction but then 1% Gaussian noise is added to reduce
the so-called ‘inverse crime’. For the future we plan to generate data with one technique
(e.g. FDFD) and do the reconstructions with an alternative technique (e.g. FV).

We have used [Nin f ,Nsup] = [0,15], [Nlow,Nhigh] = [3.75,11.25], τ1 = 0.5, τ2 = 2.0
in both numerical experiments. Figure 2 shows the shape evolution and reconstructions
of Experiment 1, whereas Figure 4 shows the one of Experiment 2. Figures 3 and 5 show
the evolution of the average voxel change per sweep for both experiments, and as a result
the evolution of the step size γ j due to our line search strategy. Both Nlow and Nhigh are
indicated by dashed lines in the upper graph of Figures 3 and 5.

Figure 4. Shape and cost evolution vs sweep number in Numerical Experiment 2 (cargo container screening).
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Figure 5. Evolution of N (upper image) and γ j (lower image) vs sweep number in Numerical Experiment 2.
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