
Fast Models Dedicated to Simulation of

Almpion RATSAKOU a,1, Christophe REBOUD a, Anastasios SKARLATOS a and
Dominique LESSELIER b

aCEA, LIST, Centre de Saclay, Gif-sur-Yvette F-91191, France
bLaboratoire des Signaux et Systèmes (UMR8506, CNRS-CentraleSupélec-Univ. Paris

Sud), Université Paris-Saclay, 91192 Gif-sur-Yvette cedex, France

Abstract. This communication presents the first development aiming at efficiently
simulating configurations of eddy current thermography for nondestructive evalua-
tion. The numerical method proposed here is based on the Finite Integration Tech-
nique for both electromagnetic and thermal problems. Simulation results obtained
using two different materials, steel and aluminum, are compared and discussed with
respect to the presence of a flaw affecting the piece under test.
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1. Introduction

The use of thermography [1] for nondestructive testing applications had received grow-
ing attention in the last years. This is mainly due to the fact that infrared (IR) cameras
have recently improved significantly in both sensitivity and spatial resolution and that
this technique is particularly adapted to many applications [2] such as composites’ in-
spection. Unlike other direct imaging techniques, it is a fast, high resolution and con-
tactless method. Thermal testing is generally divided into two main streams: passive and
active. Passive thermography is defined as measuring the temperature difference between
the target material and its surroundings under different ambient temperature conditions.
Active thermography uses a thermal source in order to deposit heat in the target mate-
rial. Most common sources consist in lamps or lasers [3] that heat part of the piece sur-
face. These techniques of depositing heat on the materials have potential disadvantages,
e.g. the reflected heat from the material can interfere with the measured signals, caus-
ing signal-to-noise-ratio (SNR) problems. For instance, many conductive materials when
used in industry are coated or painted. The heating of the workpiece may also be ob-
tained via the application of sonic or ultrasonic energy using a welding horn, i.e. vibroth-
ermography, thermosonics or sonic infrared [4]. In this case, however, contact between
the workpiece and the ultrasonic welding horn it is required, which can complicate its
practical use and cause a loss of energy transmission.
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Eddy current thermography (ECT), also named as induction thermography, is an
alternative to inspect metallic structures that does not suffer from the above-mentioned
disadvantages. This is an emerging technology in nondestructive testing (NdT) that com-
bines eddy current and thermography. ECT is based on electromagnetic induction and
Joule effect heating. The technique uses induced eddy current to heat the sample and
defect detection is based on the changes of the induced eddy current flow revealed by the
thermal visualization captured by an IR camera. Induction thermography can be used to
detect cracks [5], disbond, impact damage, delamination and corrosion.

This work presents a modelling approach using a two-dimensional numerical solver
based on the Finite Integration Technique (FIT) [6,7]. A typical configuration, consisting
of a coil located above a plate, is sketched in Figure 1. This configuration will be used
in our simulations and an axial symmetry is assumed. The same numerical tool is used
to solve both physical problems, namely the electromagnetic induction by the coil in the
plate and the heat diffusion in the plate after excitation. Due to the large difference in
time scale between the electromagnetic problem and the thermal one, a weak coupling
of the two problems is possible.
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Figure 1. Schematic setup diagram. Circular coil of inner radius Ri, outer radius Re and height h standing
above a conductive plate of thickness d in a distance e. a) Homogeneous plate. b) Homogeneous plate with a
axisymmetric defect of radius r.

In other words, the electromagnetic problem is first solved to calculate the
time-dependent eddy current density induced in the plate, then it is converted into a
heat source term by considering Joule effect. Finally, the diffusion of heat in the plate is
computed with respect to time. This first development will serve as reference for further
works, consisting in solving both problems with fast modal methods [8].

2. Theoretical formulation

ECT involves multi-physical interactions with electromagnetic-thermal phenomena in-
cluding eddy current, Joule heating and heat conduction. Simulation of induction heating
requires the ability to model multiple physical fields. Thus, modeling the generation of
eddy current requires an electromagnetic solution in the workpiece, which results in a
Joule heat distribution. The latter is used as a volumetric heating source in order to obtain
the temperature distribution in the workpiece.

The coupling between the electromagnetic problem and the thermal one can often be
further complicated by the fact that the electromagnetic properties of the workpiece are
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depending on the temperature of the workpiece, which will lead to a strongly-coupled
problem. This coupling of the two problems requires the electromagnetic solution to be
computed based on a time/temperature updated set of materials properties. This leads to
a time consuming numerical computation that can be avoided under some assumptions.

The induction heating process involves multiple time and length scales. Generally,
the time scale associated with the heat transfer is much larger than the time scale as-
sociated with the electromagnetics. The time scale associated with the electromagnetic
solution depends on the frequency f of the alternative current in the coil, while the time
scale associated with the transient heat transfer in the workpiece is determined by its
thermal properties. The length scale, for the electromagnetic problem, also depends on
the frequency, as well on the magnetic permeability μ and electrical conductivity σ . The
so-called skin depth, defined in the particular case of a half-space medium by the relation
δ = (πμσ f )−1/2, illustrates the penetration of the electromagnetic field in the piece. As
a consequence, the associated Joule effect is also generated in a depth range of two or
three times the skin depth δ . From the numerical point of view, this implies that this
particular region must be finely discretized.

2.1. The electromagnetic problem

In a typical configuration, a pulse generator emits a signal to an infrared camera and to
a induction heater, which generates an excitation signal. This excitation signal is usually
a sinusoidal of alternating current with high amplitude. The current is then driven into
an inductive coil, which induces eddy current in the neighbouring workpiece. This phe-
nomenon is described by the Maxwell’s equations, which for the quasi-static approxima-
tion are

∇×E =−∂B

∂ t
, (1)

∇×H = J, (2)

∇ ·B = 0, (3)

where E is the electric field intensity, H is the magnetic field intensity, B is the mag-
netic flux density, and J is the current density. Excitation frequencies are typically lower
than 10 MHz, consequently the displacement current term (∂D/∂ t) in (2) can be ne-
glected. The above equations are combined with the following constitutive relations char-
acterizing a linear, homogeneous and isotropic material

J = σ E, B = μ H. (4)

For solving the above differential equations and since B is divergence free, it can be
expressed as B = ∇×A where A is the magnetic vector potential. Substituting B into
(1) and using (2) as well as the constitutive relations (4), the diffusion equation for the
magnetic vector potential can be derived as:

∇×μ−1∇×A+σ
∂A

∂ t
= Js (5)
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where Js is the current density driving the inductor. The choice of a Coulomb gauge,
∇ ·A = 0, is made here.

The FIT method provides a discrete reformulation of Maxwell’s equations on its
integral form. A typical simulation task is described by a known geometry and material
configuration, as well as boundary and initial conditions. In the following a rectangular
cubic cell complex consisting of a material grid complex M, a primary grid complex G

and a dual grid complex ˜G will be used.
The eddy current density in FIT is computed by the equation

˜CM−1
μ C

�
a−Mσ

�̇
a =

��
j (6)

where ˜C and C, contain only topological information and represent a discrete curl-
operator on the primary and the dual grid G and ˜G, respectively, M−1

μ , Mσ , are the ma-

terial matrices, �
a is the magnetic vector potential and

��
j is the current density.

Initial conditions of the model assume a thermal equilibrium of the sample and its
surroundings. In the z-direction Neumann boundary conditions are imposed. On the arti-
ficial left side boundary, at ρ = 0 where the axis of the symmetry is, Neumann condition
is imposed too. On the right side boundary, at ρ = ρe Dirichlet boundary condition is
imposed. We suppose that the workpiece is infinite in the ρ-direction so this artificial
boundary does not affect the solution within the domain of interest.

2.2. The thermal problem

Due to resistive heating from the induced eddy current, the temperature of conductive
materials increases, which is known as Joule heating. It can be expressed by the equation

Q̇=
1
σ
|Js|2 ,

where the sum of generated power density Q̇ is proportional to the square of the eddy
current density. The resistive heat will diffuse as a time transient until an equilibrium
state is restored between the bulk and its surface, or better saying the workpiece and the
environment. The thermal part of the problem can be divided into two phases, (i) the
heating phase, during which the heat is being deposited in the workpiece and (ii) the
cooling phase, when the workpiece has reached a maximum temperature, the deposit of
heat has stopped, and only diffusion of the heat is occurring in the plate.

Starting with the energy conservation law in integral form

ˆ
V
�Cp

∂T
∂ t

dV =

ˆ
V
Q̇ dV −

˛
∂V

J · ds (7)

and using the Fourier’s law J =−κ∇T , the heat equation is derived as

−κ∇2T+ �Cp
∂T
∂ t

= Q̇, (8)

where κ is the thermal conductivity, � the density, Cp the specific heat and T the temper-
ature.
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In the FIT, the solution of the thermal problem is given by the equation

˜SMκ Gθ −Mcθ̇ =−q̇, (9)

which is a discrete formulation for the heat equation, where ˜S is the div-operator on
the dual grid, Mκ , Mc are material matrices, G is the discrete gradient matrix, θ the
temperature and q̇ the source term.

Pairing this equation with the boundary conditions, the temperature of the workpiece
and its surrounding is computed. The boundary conditions that are used here are the same
as in the electromagnetic problem.

3. Simulation and results

For the simulations a circular coil is used with e= 1 mm of lift-off and inner radius Ri =
11 mm, outer radius Re = 84 mm, height h= 41 mm and number of wire-turns N = 408
as in [9]. For modeling the workpiece, two different materials are used: (i) Aluminum, (ii)
Steel, their respective physical parameters being given in Table 1. We are investigating
here two scenarios. In the first case, we compare the behaviours of two homogeneous
plates of thickness d = 10 mm, made of aluminum and steel, respectively. In the second
case, we introduce a defect, which can be assumed to be a corrosion, at the bottom
surface of a thin plate (d = 1 mm) of aluminum. The defect is modelled as a local change
of physical properties (same as the surrounding environment). The excitation signal is
considered to be a sinusoid of frequency f . Setting the frequency of the excitation signal
at f = 200 Hz and the duration of the signal at 50 ms we probe the two different plates
with 10 periods of the signal. In Figure 2, the images of the simulation for three crucial
times are given. In the first two rows, for which no diffusion has been occurring, the skin
depth effect is highlighted, i.e. the difference of the electromagnetic properties of the
materials.

As one can expect, through the Joule effect, the penetration depth of the eddy cur-
rents in the aluminum plate is much larger than in the workpiece of steel. The differ-
ence between both rows of images is a result of the difference of the thermal properties
of the materials. A corrosion has been now introduced in a thick aluminum plate. The
frequency of the probed signal has been kept the same, at 200 Hz, which gives a pene-
tration depth of 6 mm, much larger than the thickness of the plate. The defect has been
modeled as a circular discontinuity in the plane (ρ,θ) of radius r = 3 cm or 5 cm and
a thickness of 0.5 mm in the z-direction. The results of the simulation of this setup are
given in Figure 3.

Since only the infrared radiation emitted by the surface of the workpiece as a func-
tion of time can be captured by a thermal camera, in Figure 4 and Figure 5 the surface
temperatures are plotted. In Figure 4, the temperature of the the workpiece on the sur-

Table 1. Electromagnetic and thermal parameters of the materials.

μr σ (S/m) κ (W/m/K) � (Kg/m3) Cp (J/Kg/K)

Aluminum case 1 3.5×107 237 2707 897
Steel 700 3.21×106 44.5 7850 475
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Figure 2. Temperature distribution images in the region of interest for different time and homogeneous
materials without defects.
Top: Aluminum. Left to the right: Different observation times, t = t0, t = t0 +50 ms, t = t0 +5s.
Bottom: Steel. Left to the right: Different observation times, t = t0, t = t0 +50 ms, t = t0 +5s.

Figure 3. Temperature distribution images in the region of interest for different time and an aluminum
plate with defect.
Top: Discontinuity radius: 5 cm. Bottom: Discontinuity radius: 3 cm.
Left to the right: Different observation times, t = t0, t = t0 +50 ms, t = t0 +5s.

face, when the radius of the corrosion is 5 cm, is plotted compared with the case of the
undamaged plate. In Figure 5 the results with a corrosion of radius of 3 cm are given.
Since the position of the thermal camera is not fixed, i.e. we can have thermal images on
both sides of the plate, the difference of temperature is shown in both surfaces.

On both cases, the information about the defect is clear for early times where we are
able to distinguish its edges, i.e. the size of the defect in the ρ-direction is well defined.
When diffusion occurs, the temperature curves of the damaged and undamaged plate
are close. In the case of the smaller defect, still we can see that there is a defect in the
workpiece but it is impossible to locate its edges. On the other hand, when the defect’s

A. Ratsakou et al. / Fast Models Dedicated to Simulation of Eddy Current Thermography180



Figure 4. Comparison of the distribution of temperature at the surfaces of the plates with and without defect for
different observation times. Defect’s radius r = 5 cm. Top: Upper surface, Bottom: Bottom surface. Different
observation time: Left: 10, 50, 70 ms Right: 1, 2, 3s

Figure 5. Comparison of the distribution of temperature at the surfaces of the plates with and without defect
for different observation times. Defect’s radius r= 3 cm. Top: Upper surface, Bottom: Bottom surface Different
observation time: Left: 10, 50, 70 ms Right: 1, 2, 3s
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radius is 5 cm, even after 5 seconds the localization of the edges of the defect can be
easily achieved through those curves. In general, in ECT we are interested on early times
when the difference of the electromagnetic and thermal properties of the workpiece can
highlight any presence of a damage on it and this is well shown by the previous results.

4. Conclusions and perspectives

To conclude, a 2D numerical solver based on the finite integration technique has been
implemented and used to simulate the behaviour of different materials under inspection
by means of eddy current thermography. Both electromagnetic and thermal problems are
coupled in a weak way, taking advantage of the large difference between their character-
istic time constants. Possible generalizations of this solver are the development of a 3D
version or the investigation of strong coupling in the calculation process.

The use of such a numerical solver is important to investigate easily some aspects
like effect of piece inhomogeneity or anisotropy, however it can lead to heavy calcula-
tions and complicated meshing considerations when addressing 3D configurations. For
this reason, this tool will later be used in complement of fast modal methods to adress
3D cases involving canonical geometries like a stratified planar medium.
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