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Abstract 

Knowing the dynamics of one’s daily stress is essential to 

effective stress management in the context of smart and 

connected health. However, there lacks a practical and 

unobtrusive means to obtain real-time and longitudinal stress 

information. In this paper, we attempt to derive a convenient 

HRV-based (heart rate variability) biomarker named cHRV, 

which can be used to reliably reflect stress dynamics. cHRV’s 

key advantage lies in its low maintenance and high 

practicality. It can be efficiently calculated only using data 

from photoplethysmography (PPG) sensors, the mainstream 

heart rate sensor embedded in most of the consumer 

wearables like Apple Watch. Benefiting from the proliferation 

of wearables, cHRV is ideal for day-to-day stress monitoring. 

To evaluate its feasibility and performance, we have 

conducted 14 in-lab controlled experiments. The result shows 

that the proposed cHRV has strong correlation with the stress 

dynamics (r>0.95), therefore exhibits great potential for 

continuous stress assessment. 
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Introduction 

Stress is a feeling of psychological and physical tension in 

reaction to a challenge or demand. We all have experienced 

stress from time to time, if not every day. In a nutshell, stress 

is hard-wired as an “alarm system.” When our brain perceives 

threat, it signals our body to release stress hormones to 

prepare for the “fight-or-flight” response.  Once the stressor is 

gone, the alarm system is meant to be reset so that our body 

can recover to a normal and relaxed state. Unfortunately, in 

modern life, the nonstop and pervasive stressors tend to 

always keep us on high alert, which over time, could lead to a 

broad range of health problems ranging from headache, 

depression to heart diseases [1-3]. This is why stress 

management is especially important more than ever, and it’s 

needed everywhere, especially places with high concentration 

of stress such as workplace, classroom etc. 

According to a national survey conducted by American 

Psychological Association in 2012 [4], Americans consistently 

report stress levels that exceed what they believe is healthy. 

Specifically, in 2012, approximately seven in ten Americans 

reported that they experienced physical or non-physical 

symptoms of stress, including irritability or anger, fatigue and 

changes in sleeping habits. What is more troubling is that the 

survey unveils the fact that people are struggling to manage 

their stress and tend to choose ineffective activities as their 

coping mechanism. For example, sixty-two percent of adults 

report that the activities they use to manage stress involve 

prolonged screen time, such as browsing the Internet, 

watching TV, playing video games and etc. 

Despite the growing evidence of stress’s epidemic impact on 

health, there still lacks practical solutions that offer support 

and proper intervention that help people navigate through their 

daily stress. This is largely due to the fact that there isn’t a 

means to obtain people’s daily stress dynamics in an 

unobtrusive manner. Measuring the levels of stress hormones, 

such as cortisol, is considered to be the “gold standard” and is 

able to provide an objective measure of stress level. However, 

it involves sampling and testing the subject’s saliva or blood, 

which is invasive and time-consuming. Although providing 

accurate measurement, the result is only able to reflect only a 

snapshot rather than the dynamics of one’s stress. Therefore, 

methods involving hormone testing are ill-suited for stress 

management.   

In this paper, we propose a convenient HRV-based biomarker, 

(cHRV), that can be calculated only using 

photoplethysmography (PPG) data available in most consumer 

wearables. Due to its low maintenance and high practicality, 

cHRV bears great potential to make automated and 

personalized stress management possible. Not relying on 

custom devices other than a smartwatch, the computation of 

cHRV is designed to be passive and transparent to users with 

no extra cost, enabling a seamless integration into users’ daily 

life. Moreover, cHRV offers a continuous and real-time stress 

signal, which is not only valuable at the individual level, but 

also powerful in generating insights about stress when 

examined at a higher level, for example, workplace, classroom 

and etc.  

Specifically, in order to reliably reflect one’s stress dynamics, 

cHRV is calculated using a number of physiological features 

based on heart rate variability (HRV), which is a commonly 

used indicator of Autonomic Nervous System (ANS) activities 

[5]. Studies show people under mental stress demonstrate a 

decrease in HF (high frequency) of HRV compared to a 

control group. Moreover, a sizeable body of research has also 

been dedicated to studying the link between HRV 

measurement and level of stress. The results suggest that HRV 

is a strong discriminative feature for distinguishing between 

stress and non-stress [6-8]. The changes in HRV is linked to 

the occurrence of stressors and is linked to each other due to 

the fact that the cardiovascular system is mostly regulated by 

the ANS through sympathetic and parasympathetic activities, 

which are also responsible for controlling body’s reaction to 

subjective stressors. Therefore, HRV-based signals can offer 

insights into the activity of sympathetic and parasympathetic 
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pathways, which in turn can reflect physiological stress in 

certain contexts. 

 

The contributions of this paper are as follows: 

• We propose a method of extracting a HRV-based 

biomarker (cHRV) from PPG that is reflective of the 

stress dynamics. The method is convenient and 

practical, and has great potential to offer support and 

proper intervention that help people navigate through 

their daily stress. 

• We present the preliminary evaluation results that 

suggest the proposed biomarker is highly correlated 

with the stress dynamics. 

Methods 

The data collection was conducted in a controlled, in-lab 

setting. The primary goal of the experiment was to investigate 

the feasibility and effectiveness of using cHRV to capture 

stress dynamics. Therefore, all the experiments shared a fixed 

structure (shown in Figure 1) which was pre-defined to isolate 

and control the stressor that causes the stress. 

Controlled In-lab Experiment 

 

Figure 1 – Structure of controlled in-lab experiment 

Setting 

The experiments were performed in either office rooms or 

reserved meeting rooms where only one or two researchers 

and one subject were present. Prior to the experiment, the 

researchers will assist the subject with putting on the devices 

for data collection, and make sure data is being recorded 

properly. The devices used for recording physiological data 

include; 1) a wrist-worn device with PPG sensor and 

electrodermal activity sensor (EDA), 2) an electrocardiogram 

(ECG) sensor and 3) a headset with a 4-lead 

electroencephalogram (EEG) sensor.  

Procedure 

As shown in Figure 1, the in-lab experiment consists of 3 

sessions including Baseline, Stress Test and Recovery. 

Specifically, during the Baseline session, we play guided 

meditation for 20 minutes to relax the subject as much as 

possible, in an attempt to minimize the residual stress from 

other prior stressors, if there is any. Therefore, the collected 

physiological signs at the end of the Baseline session should 

reflect the subject’s baseline state (when not under stress). 

In the Stress Test session, we conduct a standard stress-

inducing test where the subject is requested to answer a 

verbally asked, non-trivial arithmetic question (e.g., 2010-

37=?) every 10 seconds for about 6 mins [9-10]. This session 

consists of two such math tests with a 5-minute relax in 

between them to protect the subject from being under 

excessive stress. With the stress test, we exposed the subject to 

two types of typical daily stressors, which are 1) the stress as a 

result of being requested to solve non-trivial problems, and 2) 

the stress from having to finish tasks under time pressure.  

In the Recovery session, we use the same relaxation technique 

as used in the Baseline session to help the subject recover 

from possible elevated stress. Data collected during this 

session will be used to investigate the recovery process from a 

stress buildup. 

At the end of each session, we asked the subject to rate his or 

her current perceived stress level (PSL) on a scale from 0 to 

10, with 0 being not stressed at all and 10 being extremely 

stressed.  

Table 1 – List of Data Collection 

 

Subjects 

The subjects consist of 12 IBM employees, mostly composed 

of young adults with a few middle-aged subjects. Our study 

along with its data collection procedure is approved by the 

Institutional Review Board. All the subjects voluntarily agreed 

to contribute to the data collection and signed a consent form. 

Individuals will be excluded if they have significant health 

conditions or take medications that interfere with stress tasks 

including diagnosed cardiovascular conditions (e.g., 

arrhythmia, hypertension), neurological disorders (e.g., seizure 

disorder, stroke, transient ischemic attack), mental illness 

(e.g., depression, panic disorder) and cognitive or attention 

disorders (e.g., attention deficit/hyperactivity disorder). 

Dataset 

During the course of the experiment, we have collected a rich 

set of raw data from various sensors (shown in Table 1). For 

performance evaluation, we extracted cHRV along with three 

other signals commonly used as indicators of stress for 

comparison (shown in Figure 3).   

 

 

Figure 2 – A flowchart illustrating the process of extracting 

cHRV from consumer wearables 

Extracting cHRV from PPG Signal 

PPG sensor has been widely embedded in most smartwatches 

and fitness trackers. Similar to pulse oximeter, PPG is a light-

based technology to sense the rate of blood flow as controlled 

by the heart’s pumping action. As shown in Figure 2, A series 

of operations are involved in the process of extracting cHRV 

from consumer wearables with motion sensor and PPG sensor. 

Data Sensor Sampling Rate

PPG signal PPG 64Hz 

Skin Conductance EDA 4 Hz 

Brain Wave EEG 250 Hz 

Heart Rate PPG 1 Hz 

Acceleration ACC 32 Hz 

Perceived Stress Level Self-report n/a 
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To calculate RR intervals from PPG signal, we first perform a 

6-order Butterworth low-pass filter on the original PPG signal, 

with a cutoff frequency of 2 Hz. This filtering process is 

intended to filter out noise irrelevant to heart beats as much as 

possible. Then a peak detection operation will be conducted 

on the filtered PPG signal to identify peaks in the signal that 

represents heart beats. Lastly, the time intervals between 

successive identified peaks are extracted, resulting in a 

temporal sequence of RR intervals. 

A sequence of outlier-free, beat-to-beat intervals is essential  

to accurate HRV calculation. In order to obtain normal and 

reliable RR intervals, commonly referred to as NN intervals, 

we filter out the outliers in RR intervals with a correction 

procedure consisting of three steps. First, as motion artifact is 

the major cause to corrupted PPG signal, we filter out the RR 

intervals based on their corresponding motion level, which is 

derived using acceleration data collected from the motion 

sensor. In the second step, a standard threshold-based method 

is used to filter out abnormal RR intervals based on its 

duration and also the difference in duration between 

consecutive RR intervals. Lastly, a distribution-based method 

is used to identify and remove outliers within a sliding 

window.  

After the RR interval correction, the resulted sequence of the 

NN intervals will be used to extract cHRV. In clinical 

practice, no less than five minutes of NN intervals is required 

to calculate short-term HRV features, although recent research 

studies have suggested that shorter windows (e.g., 60 seconds) 

[11] may also be sufficient, especially for time-domain 

methods. In our case, a five minute sliding window of NN 

intervals are used to extract cHRV. To ensure the reliability of 

the feature extraction, a Data Quality Control component is 

responsible for identifying the window with a high percentage 

of discarded RR intervals, which is a major sign of poor data 

quality, mostly caused by excessive motion. Only data within 

windows, with acceptable data quality, are used to calculate 

HRV-based features. Features including the total power of 

HRV SDNN (standard deviation of normal to normal R-R 

intervals) and the high frequency power rMMSD (square root 

of the mean squared difference of successive N-N intervals) of 

HRV will be combined to calculate cHRV. 

 

 

Figure 3 – Stress signals extracted from a 3-session in-lab 

experiments (from top: EEG, EDA, HR and cHRV signals), 

along with self-reported stress level at the end of each session. 

 

Other Stress Signals Extracted for Comparison 

To gauge the performance of cHRV in reflecting stress 

dynamics, we extract three other signals that are commonly 

used as indicators of stress and compare them with cHRV for 

evaluation purpose. Data used to extract these signals were all 

collected in paralell with the data used to derive cHRV. These 

stress signals include: 

• Skin Conductance (EDA): The increase in EDA 

(Electrodermal Activity) signal indicates increased 

sweat production, which is commonly associated 

with sympathetic arousal. 

• Power of high-beta band of the brain wave (EEG): 

increased power is associated with high arousal (e.g., 

stress and alertness) 

• Heart Rate (HR): Certain stressful situations could 

lead to increased heart rate. 

In Figure 3 we plot the cHRV signal along with the EDA, 

EEG and HR signals over time using data collected from a 

typical in-lab experiment. In these experiments, the subject’s 

stress level has been successfully elevated by the Stress Test 

session and later relieved by the Recovery session, resulting in  

an increase of perceived stress level from 1 to 3 followed by a 

decline from 3 to 1. A key observation of this case is that the 

EDA and cHRV are the signals that most reflected the 

subject’s stress dynamics. Specifically, a noticeable decline 

can be observed in both signals during the Baseline and 

Recovery sessions, which are designed to reduce previous 

stress and induced stress, respectively. More importantly, the 

increase in stress during the Stress Test session is clearly 

reflected in both EDA and cHRV. Interestingly, the effect of 

the short five minute resting in the middle of the Stress Test 

session is also captured, resulting in a brief dip around the 

thirtieth minute in both EDA and cHRV signals.  

Results 

The primary goal of the evaluation is to examine the cHRV’s 

ability and effectiveness in reflecting the dynamics of stress. 

The basic idea is to examine the correlation between a signal 

and the stress dynamics during the experiment.  

Perceived Stress Level 

 

Figure 4 – Subjects’ Perceived Stress Levels (PSL) during the  

in-lab experiment sessions (plotted with data from 14 

experiments) 

For evaluation purposes, we use Perceived Stress Level (PSL) 

as the proxy of the stress dynamics. PSL is reported by the 

subject at the end of each session on a scale from 0 to 10. The 

structure of our in-lab experiment was designed to see if the 

experiment showed a  result in an PSL increase during the 

Stress Test session, and a PSL reduction after the Recovery 
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session. In Figure 4, the normalized PSLs collected from 14 

experiments are plotted over three sessions. Note that only two 

subjects’ PSL reports are inconsistent with the structure of the 

experiment. Interestingly, one subject (A) reported reduced 

PSL in the  Stress Test session (blue line Figure 4), although, 

all four stress signals suggest otherwise (blue lines Figure 5). 

Therefore we speculate that subject (A) might have a 

misperception of his or her stress level. Another subject (B) 

reported constant stress reduction (yellow line Figure 4) 

during the experiment. This could be largely because the 

subject began the experiment with relatively high residual 

stress built up from work or other previous activities, 

rendering the stress-inducing session ineffective. Although the 

Stress Test did not work as intended, the cHRV successfully 

captured data that showed a constant stress reduction over the 

experiment (the yellow line shown in Figure 5d). 

Correlation-based evaluation 

To investigate and demonstrate cHRV’s effectiveness in 

reflecting stress dynamics, we calculate all four 

aforementioned stress signals’ correlation with the subjects’ 

perceived stress level for each of the experiments. 

Specifically, we first conduct simple processing on the signal 

contained in each session, resulting in a sequence of three 

values for each signal. Due to inherent nature of the three 

sessions, the value is calculated by averaging the last five 

minutes of signals for Baseline and Recovery sessions, and the 

entire twenty minutes of signals for Stress Test session.  

Figure 5 shows the normalized result for each signal. Lines 

with the same color in Figure 4 and 5 represent data from the 

same experiment.  

 

 

Figure 5 – Comparing cHRV with other signals in reflecting 

stress dynamics of 14 in-lab experiment. 

Next, for each experiment, we calculate Pearson Correlation 

between the corresponding stress signal shown in Figure 5 and 

the reported PSL shown in Figure 4. The result is plotted in 

Figure 6. We can see that cHRV achieves the highest average 

correlation (r>0.95) with the most reliable performance. In 

contrast, other signals such as EDA and EEG failed in 

reflecting the stress dynamics, resulting in lower correlation 

with PSL. As we can see in Figure 5a, although EDA signal is 

able to capture the stress dynamics in most of the experiments, 

there are several results where the elevated stress in the Stress 

Test session were incorrectly measured as reduced stress. This 

could be mainly because that the skin conductance is also 

affected by other environmental factors such as room 

temperature, therefore adding uncertain noises. In Figure 5b, 

we can see that the EEG signal is accurate in detecting the 

decline in stress level in Recovery session, but tends to yield 

unreliable measurement for Baseline session. 

  

 

Figure 6 – Pearson Correlation (90 percentile) between 4 

stress signals and the corresponding Perceived Stress Level. 

Discussion 

In this experiment, we use perceived stress level as the proxy 

stress indicator because there lacks ground truth on exactly 

how stressed people are. However, we have learned from the 

subjects that there may exist a gap between one’s psycological 

perception of stress feeling and physiological measurement of 

stress response, as illustratd by Figure 4 that subject (A)  

might have a misperception of his or her stress level. To 

further probe this problem, we propose to categorize the 

perception-measurement levels into four groups, as shown 

below:  

 

Figure 7 – Relationship between perceived stress level and 

measured stress level. 

However, the current experiment is limited by the number and  

diversity of subjects. In the next phase of this study, we will 

recruit more subjects, then categorize them according to these 

four groups, and analyze for each group what charactoristics 

are representative and what factors or context contribute to the 

misperception (Groups 1 and 4). This line of research work 

will help us establish unique user stress profiles and identify 

influencing stressors and contexts. The goal is to provide in 

time, continous feedback to users so they have a better self 

understanding on how their minds and bodies function and 

respond to various stressors.  
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This is an essential step towards stress management. Our 

proposed cHRV method also offers a valuable objective 

addition to widely used psychological instruments for 

measuring self-reported perceived stress scales (PSS) [12] by 

providing real-time convenient physiological measures in 

daily life. 

Another valuable insight gained from this experiment is that 

same physiological features could mean different stress 

indexes for different users, as shown in Figures 5 and 6. 

Therefore, one-size-fits-all detection model will not provide 

accurate and meaningful results for everyone. The proposed 

stress monitoring approach takes into account the 

individualized stress profile, which will be adjusted, using 

user’s sparse stress labeling (e.g., users’ perceived stress level 

at a certain time), so that it can gradually adapt to the user's 

unique physiological response.  

Driven by the proliferation of wearable devices, the authors 

believe the ability to continuously monitor and manage stress 

in real-time is a critical component of this new exciting 

commercial domain. Although future studies are needed, the 

initial results of cHRV from PPG sensors, the mainstream 

heart rate sensor embedded in most of the consumer 

wearables, has shown its potential to not only enable 

researchers to explore practical, continuous, unobtrusive and 

personalized stress management, but also empower users to 

stay aware of their stress level in real-time and effectively and 

efficiently manage their stress on a daily basis.   

Conclusion 

In this study, we experiment practical and unobtrusive means 

to obtain real-time and longitudinal information about 

stress. The proposed cHRV approach uses proliferated 

consumer wearables to derive a convenient HRV-based 

biomarker to reflect daily stress dynamics. We compare and 

evaluate the feasibility and performance of cHRV through in-

lab controlled experiments with other biosensors, including 

EEG, EDA and HR. The result shows that the proposed cHRV 

has strong correlation with the stress dynamic, and therefore 

exhibits great potential for continuous daily stress assessment 

with reasonable reliability and high practicality. 
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