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Abstract 

Eligibility criteria are important for clinical research protocols 

or clinical practice guidelines for determining who qualify for 

studies and to whom clinical evidence is applicable, but the 

free-text format is not amenable for computational processing. 

In this paper, we described a practical method for transforming 

free-text clinical research eligibility criteria of Alzheimer’s 

clinical trials into a structured relational database compliant 

with standards for medical terminologies and clinical data 

models. We utilized a hybrid natural language processing 

system and a concept normalization tool to extract medical 

terms in clinical research eligibility criteria and represent them 

using the OMOP Common Data Model (CDM) v5. We created 

a database schema design to store syntactic relations to 

facilitate efficient cohort queries. We further discussed the 

potential of applying this method to trials on other diseases and 

the promise of using it to accelerate clinical research with 

electronic health records. 
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Introduction 

Randomized controlled trials are the gold standard for medical 

evidence generation. Eligibility criteria (EC) are the essential 

elements of clinical study protocols for specifying qualification 

of participants but often exist as free text, which are not 

amendable for computer processing. They are also found to 

have poor comprehensibility [1]. Given the wide adoption of 

electronic health records (EHRs), there is a great need for 

improving the interoperability of EC with EHRs to better 

integrate clinical research and patient care towards the 

development of a learning health system.  

Multiple methods, such as ERGO [2], for structuring EC were 

developed before the widespread adoption of EHRs. As a result, 

such representations do not interoperate well with EHRs.  Levi-

Fix et al. developed EliXR-CDM [3] to structure criteria using 

the OMOP Common Data Model v4. This system was the first 

of its kind to transform free-text EC into a structured format 

using a standardized common data model. However, with a 

rule-based natural language processing system, it could not deal 

with the complex preprocessing and the scarcity of evaluation, 

which limited its generalization.   

In this study, we extended this method and adopted the latest 

OMOP data standard, OMOP CDM version 5 [4], a model that 

is more comprehensive and better integrated than OMOP CDM 

version 4 for facilitating the interoperability among disparate 

observational databases. To the best of our knowledge, this 

study is amongst the first to build a relational database of 

clinical trial eligibility criteria using a widely adopted EHR data 

standard, OMOP CDM v5. Our method helps bridge the gap 

between clinical trials and EHRs by enabling fast and accurate 

patient cohort searching for trial recruiters, protocol designers, 

and healthcare providers.  

Method 

Our method consists of the following steps: (1) criteria 

relational database design; (2) criteria parsing; (3) concept 

normalization using terminologies; (4) relation extraction; and 

(5) ETL (extract, transform and load) for criteria using the 

OMOP CDM v5. We used a hybrid machine learning-based 

natural language processing toolkit, CLAMP, for name entity 

recognition to extract medical terms in EC. We matched the 

extracted terms to the standardized concept identifiers in the 

OMOP CDM v5. Aside from the entity recognition, we also 

used the SVM classifier to obtain relations between entities and 

attributes. Finally, we built a relational database for fast 

querying via Django. We also provided a RESTful API for 

retrieving information.  

Step 1: Database schema design 

The EHR data standard of OMOP CDM v5 was described by 

the Observational Health Data Sciences and Informatics 

(OHDSI) community [5]. In this data model, medical terms 

were categorized into seven types including four entities 

(Condition, Observation, Drug, Procedure) and three attributes 

(Qualifier, Measurements, Temporal_constraints). Each 

attribute has a close relationship with a corresponding entity. 

For instance, a relation of has_value shows a quantitative 

measurement value of one entity. The four entities consist of 

medical terms with similar characteristics, while the three 

attributes differ from each other. Due to this, we decided to 

build an efficient schema in which the four entities could be 

stored into one table while the three attributes could be saved in 

three separate tables. The benefit of categorizing attributes in 

individual tables is to handle measurement and temporal 

constraints independently. This will prevent disarrangement 

with other terms in the criteria database as these two attributes 

are lab values or time phrases that need to be split in future work. 

We also used three types of relations to build the connections 

between entities and attributes. Given the fact that one entity 

has several attributes and one attribute corresponds to many 

entities, the relationship between entities and attributes were 

considered as many-to-many in the database. With this design, 

the relations could be saved in the database and the pattern of 

entities and attributes could be queried. 

Step 2: Name entity recognition (NER) 

To achieve precise name entity recognition, we implemented a 

comprehensive clinical natural language processing software, 

CLAMP [6], designed by Hua et al in 2015. We used annotated 

criteria corpus of 230 Alzheimer’s disease clinical trial 

provided by previous lab members [7] to train the name entity 

recognition model. We implemented brown-clustering, n-gram, 

prefix-suffix, random-indexing, sentence-pattern, word-

embedding, word-shape and word regular expression as name 

entity recognition features with a five-fold cross validation. 
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Then we applied a NLP pipeline consisting of NegEx assertion, 

sentence detector, tokenizer, POS tagger, CRF-based NER and 

UMLS encoder. An example NER output is shown in Table 1. 

Table 1– Structured Output of Entity and Attribute in EC 

NCT00000171 

Exclusion Criteria:  

Sleep disturbance is acute (within the last 2 weeks). 

Condition present Sleep disturbance T0 

Qualifier present acute T1 

Temporal constraints present within the last 2 weeks T2 

Step 3: Concept normalization 

Once we finished the name entity recognition, we mapped the 

extracted clinical terms into the concept standardization 

identifiers (CONCEPT_ID) using the open-source software, 

Usagi [8]. Each concept has a distinctive CONCEPT_ID, which 

is mapped to multiple CONCEPT_CODES across domains 

such as ICD9CM, SNOMED_CT, etc. With the matching, we 

were able to map the concepts in clinical research eligibility 

criteria into terminology standards. Usagi provided an 

algorithm to evaluate the effect of the matching by giving a 

score; a higher score represents better match, and a score of 1.00 

is a 100% match. We manually reviewed 100 randomly chosen 

terms of each domain and analyzed a statistical performance of 

the matching score. After an assessment of the matching score, 

we set the matching threshold at 0.80.  

Step 4: Relation extraction 

We applied our previously developed open-source criteria 

parser [7] to extract relations between entities and attributes 

using the Support Vector Machine (SVM) classifier. The 

direction of each relation was defined from each entity to its 

corresponding attributes. This method used the basic function 

of LibSVM [9] with features including the class of head entity, 

the class of attribute, the shortest path between two terms in the 

dependency tree and whether or not the entity is the only one in 

its class in the corpus. The classifier inspected each entity-

attribute pair and projected them into four classes: no_relation, 

has_value, modified by, has_temp. An example of relation 

extraction output is shown in Table 2. The relation between 

entities T4 (“liver or kidney disease”) and T3 (“clinically 

significant”) is “modified by”.  The relation between entities 

T16 (“alcohol abuse and dependence”) and T15 (“current”) is 

“has temporal relation” or “has-temp” in short form.  

Table 2– Structured Output of Relation in EC 

NCT00007189 

Exclusion Criteria:  

Clinically significant liver or kidney disease. 

Current alcohol abuse or dependence. 

T4 

liver or kidney disease

T3 

Clinically significant 

 

Modified by 

T16 

alcohol abuse or 

dependence 

T15 

Current 

 

Has_temp 

Step 5: Data storage  

In the last step, we created an efficient schema using Django 

[10] and loaded all the extracted entities, attributes and relations 

into respective tables. The most economical method of storing 

relations is through many-to-many relationships. In addition, 

we used REST architecture [11] to build an API to provide a 

convenient interface for users to retrieve information. 

Results 

Database Infrastructure Description 

The database is comprised of five major tables: (1) clinical trial 

metadata information (2) entity table (3) qualifier table (4) 

measurement table (5) temporal constraints table. The detailed 

schema and formulation of the database provided as an 

appendix is available at https://github.com/Yuqi92/DBMS_EC . 

Descriptive Statistical Analysis  

To understand how well the name entity recognition and 

relation extraction performs at each step, we designed an 

evaluation framework by using classical classification metrics: 

precision, recall and F-score, which are defined below: (TP: 

true positive; FP: false positive; FN: false negative; TN: true 

negative). 

Table 3– Definition of TP, FP, FN, TN of a NER System 

True positive System extracts a concept that matches the 

label 

False positive System extracts a concept but there is no 

label or doesn’t match the correct label 

Figure 1– Workflow of Transformation and Reconstruction 
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To ensure that we had an ample amount of training set for good 

performance on name entity recognition, we analyzed the 

performance of varying sizes of annotated files. Based on the 

learning curve shown in Figure 2, we confirmed that the 

training set of 230 annotated trials is sufficient to achieve good 

performance of name entity recognition. 

 

Figure 2– Learning curve for NER tasks  

The performances of the different domains are variable due to 

the size of the training data. Of the annotated trials, the 

Condition domain is the largest (4136 terms) while the 

Procedure domain is the smallest (652 terms). According to  

the evaluation result of NER (Table 4), the Condition domain 

happened to achieve the best performance while the  

Procedure domain happened to have the poorest performance. 

Comparing these results, a larger amount correlates with a 

better performance and vice versa.  

Table 4 – Evaluation of Name Entity Recognition 

Domain Precision Recall F1-score 

Condition 0.835 0.836 0.831 

Observation 0.748 0.745 0.793 

Drug 0.852 0.790 0.820 

Procedure 0.721 0.583 0.645 

Qualifier 0.820 0.756 0.786 

Measurement 0.820 0.770 0.794 

Temporal_constraints 0.826 0.788 0.807 
 

We matched the four entities (Condition, Observation, Drug, 

Procedure) and the qualifier attribute to the CONCEPT_ID in 

OMOP CDM v5. We used the matching score to evaluate the 

mapping results for different domains on decreasing thresholds. 

Figure 3 is the descriptive statistical analysis curve of the 

matching score for the different domains. It’s apparent and 

reasonable that when the matching score threshold was 

decreased from 0.9 to 0.7, the false positive rate 

(CONCEPT_ID incorrectly matched the term) decreased, while 

the false negative rate (CONCEPT_ID lost the term) increased. 

Therefore, we set the matching score threshold to 0.80 to trade 

off the balance between the error and the missing. 

 

Figure 3– Mapping evaluation statistical analysis result 

When the threshold reached 0.80, 68.80% of terms could be 

matched to CONCEPT_ID. Among the different domains, 

Qualifier terms reached the highest matching proportion 

(86.53%), Condition terms reached 74.88% and Observation 

terms reached only 44.41%. To evaluate the compression 

efficiency using CONCEPT_ID, we calculated the unique 

terms amount (in exacted terms), the compression ratio between 

number of unique terms and number of extracted terms, the 

unique CONCEPT_ID amount (in matched terms) and the 

compression ratio between number of unique CONCEPT_ID 

and number of matched terms. The ratio of the unique 

CONCEPT_ID is much lower than that of the unique terms in 

all domains. In total, the unique CONCEPT_ID ratio was 0.08, 

while the unique terms ratio was 0.19. Therefore, the 

representation ability of CONCETP_ID was well proved. The 

details are shown in Table 5. 

Table 5 – Statistical Matching Result of Extracted Terms 

 Extra

cted 

term 

Num. 

of 

match 

Perc. 

of 

match 

(%) 

Unique term 

(compression 

ratio) 

Unique 

CONCEPT_ 

ID 

(compressio

n ratio ) 

Condition 23336 17474 74.88 4453 (0.19) 1336 (0.08) 

Observation 8824 3919 44.41 2360 (0.27) 391 (0.10) 

Drug 6775 3694 54.52 1930 (0.28) 624 (0.17) 

Procedure 3195 2136 66.85 626 (0.20) 193 (0.09) 

Qualifier 9354 8094 86.53 449 (0.05) 188 (0.02) 

Total 51484 35317 68.60 9819 (0.19) 2660 (0.08) 

 

Relation extraction was evaluated separately by using the gold 

standard relations marked in annotated texts. The performance 

of SVM relation classifier is shown in Table 6. We counted the 

number of extracted relations and the number of attributes 

covered by the relations. Ideally, the attributes should not exist 

independently, and the cover percentage should be 100%. By 

dividing the number of corresponding attributes (has_value & 

Measurement; has_temp & Temporal Constraints; modified by 

& Qualifier), we calculated the percentage of extracted 

relations from the existing relations (Perc. of Extracting in Table 

6). Our method extracted 54.81% of relations in general,  

79.93% of relations between qualifier and entity, and 38.24% 

measurement.  

Table 6 – Statistical Matching Result of Extracted Relations 

 Number 

Unique 

number 

Attribute 

number 

Perc. of 

Extracting

(%) 

Has_value 3005 2224 5816 38.24 

Has_temp 4632 3051 4507 67.69 

0 50 100 150 200 230 250

Precision(%) 0 65.4 78.2 79.7 80 80.3 80.2

Recall(%) 0 60.5 71.9 73.4 75.1 75.2 75.2

F1-score(%) 0 62.2 74.8 76.5 78.1 78.2 78.4
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Modified by 10400 7477 9354 79.93 

Total 18037 12752 19677 54.81 

We also evaluated the relation extraction performance by 

manually reviewing 100 randomly-selected trials and counting 

statistical measurements including true positive, false positive 

and false negative. Then, we calculated the precision and recall 

of the three types of relation, “modified by”, “has temporal 

constraints” and “has value” as shown in Figure 4. The 

performance of relation “modified by” was the best among these 

three relations, while “has value” was the poorest. The 

performance evaluation result corresponds to the descriptive 

statistic matching result of extracted relations. 

 

Figure 4– Evaluation of Relation Extraction 

Sample Use Cases  

This database of structured, standard-based eligibility criteria 

enables several use cases for integrating clinical research 

studies and electronic health records.  

We have designed a RESTful API for users to input terms and 

search studies with certain criteria. Our http request accepted 

several parameters including entity key word (entity), criteria 

type (c-type), temporal constraint key word (t-constrain), 

qualifier (qua), etc. The sample request is in following format:     

GET {domain}/?entity=#&c_type=#&t_constrain=#&qua=#. 

The response to this request is a list of clinical trials NCT 

identifiers that match the request. 

Here we take several pair querying examples. For instance, if 

we are concerned about which trial has exclusion criteria 

involving participants with severe psychotic features within the 

previous three months, we are going to fetch all the available 

information for those specific parameters in the format 

{“entity”: psychotic, “qualifier”: severe, “criteria type”: 

exclusion, “temporal constraints”: three + months}. The 

complete URL for this request as it appears on the page:               

GET{domain}/?entity=psychotic&qualifier=severe&c_type=e

x&t-constrain=three+month. The response to this request 

comes with two trials NCT identifiers: NCT01822951 and 

NCT00911807.  

Another pairing example is to look for participants who have 

had stable AD therapy, which often occurs as essential 

inclusion criteria in Alzheimer’s disease clinical studies. In this 

case, the parameters should consist of entity (AD) and qualifier 

(stable). The following list of NCT identifiers is the response to 

this request: 

NCT00495417,NCT02051608,NCT01122329,NCT02670083,

NCT02386306,NCT01954550,NCT02423122,NCT00299988. 

Therefore, by using the RESTful API, healthcare providers or 

clinical research investigators can request relevant study 

criteria information from our database.  

Discussion 

We fetched 1587 trials of Alzheimer’s disease as of September 

2016 from ClinicalTrial.gov [12] and captured 4453, 2360, 

1930, 626, 449 unique terms of Condition, Observation, Drug, 

Procedure, and Qualifier respectively. We also matched 

extracted terms into CONCEPT_ID in OMOP CDM v5. The 

compression ratio of Condition, Observation, Drug, Procedure, 

and Qualifier were respectively 0.08, 0.10, 0.17, 0.09 and 0.02. 

Then we associated attributes with entities via relations 

including “has_value”, “has_temp” and “modified by” into a 

relational database. The relation “modified by” can be found 

and extracted from 79.99% of Qualifier. We justified the 

benefit of this method by descriptive statistical analysis and 

detailed user cases. We then further discussed the great 

potential and future application of this method in bridging the 

gap between EHR and EC. 

Error Analysis 

Errors of NER and relation extraction mainly resulted from 

wrong classified predictions. As for NER, the performance of 

the Procedure domain was poorer than that of other domains 

because the Procedure had the smallest number of instances in 

the training set. Since the output of NER is the input of the 

relation extraction, the errors in NER task will be multiplied in 

the relation extraction step.  

Another cause of errors is the incomplete coverage of entities 

in the OMOP CDM v5.  In other words, not all the terms 

existing in the criteria text have already been modeled in the 

OMOP CDM v5. Scarcity in the OMOP terminology dictionary 

is the reason why the matching score of some terms are lower 

than 0.50. Terms consisting of capital letters such as AChEI, 

NIA-AA criteria, MI are not identified correctly. An entire list 

of recommended terminology that could be added to the 

Concept table of OMOP CDM v5 will be provided.  

Primary Contributions  

This study has made four primary novel contributions.  

First, we enabled semantic search of criteria by normalizing 

clinical terms using standard terminologies and by mapping 

them to CONCEPT_IDs in OMOP CDM. In this way, terms 

that share one meaning were regarded as the same. For instance, 

in the previous search methods, the term “AV block” was not 

returned by the query using the term “atrioventricular block”. 

In our database, these two terms are referred to one 

CONCEPT_ID, 316135. Users will no longer be 

inconvenienced by incomplete search results revolving around 

heterogeneous semantic representations for the same concept. 

Furthermore, each CONCEPT_ID has an associated clinical 

code such as ICD9CM, SNOMED_CT in the CONCEPT table 

of OMOP CDM. Users will be able to search for a specific 

disease by inputting its ICD9CM code.  

The second primary contribution is the transformation of free-

text criteria into a computable relational database compliant 

with an EHR common data model. The way relations were 

stored is a highlight of our work. For example, the many-to-

many relationships in the database schema can retrieve relations 

between an entity and its respective attribute. Also, the clear 

definition and completeness of the attribute category will 

become a strong tool for handling pair querying, that the 

advanced search function provided by ClinicalTrial.gov could 

not achieve. For instance, if we input a combined search of 

several different domains such as “severe” + “Alzheimer’s 

Disease” + “for three years” + “inclusion”, then the search 

result will include all the trials with participants who have had 

severe Alzheimer’s disease for three years. Therefore, users can 

query and search the database for sophisticated logical queries, 

which can essentially improve the efficiency of clinical trial EC 

reuse.   

Thirdly, the database of Alzheimer’s disease provides different 

audiences with an effective computer-based knowledge 

representation of EC.  Study investigators could query in both 

the hospital data warehouse and the database of EC to target 

Precision Recall F1-score

has_value 0.68 0.65 0.62

has_temp 0.75 0.77 0.76

modified by 0.9 0.98 0.96
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eligible participants. Another use case for a trial designer is that 

the computable format of the criteria could help them define 

future study guidelines by comparing differences and 

commonalities of EC and study contents.  

Finally, as an evidence-based clinical support method, the 

combination of searching the databases of EHR and EC allows 

healthcare providers to determine if a patient’s treatment will 

benefit from a particular study or decide whether the patient is 

eligible for a study. Essentially, EHRs can be automatically 

matched to computably formatted clinical trial EC in our 

database. We could design a pipeline for patient screening with 

a combination of EHRs and the database of EC.  

Limitations and Future Work 

Based on the work we have done, researchers could build a 

database with more comprehensive information from clinical 

trial studies. Our future work will concentrate on two areas: 

performance and completeness. To improve the performance of 

our transformation pipeline for the free-text criteria, we will 

need to explore methods to extract complex expressions of 

Temporal Constraints [13] and Measurement [14]. We plan to 

extract specific numerical and temporal expressions from 

complex attributes. For example, temporal information such as 

“for three months” should be extracted and stored as “three” + 

“month” into different columns. Measurement information like 

“Hemoglobin ≥ 9.0g/dL” should be extracted and stored by 

number and unit separately and the unit for the same test should 

be unified. Further collaborative research on natural language 

processing of free-text information is desired.  

To improve the completeness, the outcomes and other sections 

of the trial will need to be transformed into structured output 

and stored into the database. We would also like to expand the 

method to cover the entire disease spectrum from 

ClincalTrial.gov. More studies are warranted to test how this 

method would work for other eligibility features of other 

diseases. We may need to expand the database to better cover 

the eligibility features and elements. Additional tables may 

need to be added such as the Anatomic Location or Genetic 

Name when it comes to cancer. Furthermore, we will design a 

user-friendly interface to retrieve the necessary features from 

our database. The implementation of Django, a high-level web 

framework, also encourages rapid development and design that 

significantly reduces the workload of the back-end 

development. Therefore, we successfully transformed free-text 

EC into a computable, relational database following OMOP 

CDM v5. We hope that this computable format of EC can 

support the need of predictive analysis of targeted participants 

of clinical trials in the near future. 

Conclusions 

We contributed a practical method for transforming free-text 

eligibility criteria into a computable, relational database 

following OMOP Common Data Model (CDM) version 5. This 

method promises to be applicable to all disease trials in 

ClinicalTrial.gov and to accelerate EHR-based clinical research. 
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