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Abstract

Search techniques in clinical text need to make fine-grained 
semantic distinctions, since medical terms may be negated, 
about someone other than the patient, or at some time other 
than the present. While natural language processing (NLP) 
approaches address these fine-grained distinctions, a task like 
patient cohort identification from electronic health records 
(EHRs) simultaneously requires a much more coarse-grained 
combination of evidence from the text and structured data of 
each patient’s health records. We thus introduce aligned-layer 
language models, a novel approach to information retrieval 
(IR) that incorporates the output of other NLP systems. We 
show that this framework is able to represent standard IR 
queries, formulate previously impossible multi-layered 
queries, and customize the desired degree of linguistic 
granularity.
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Introduction

Search (i.e., information retrieval) techniques in clinical text 
face the challenge of coarse vs. fine granularity. In a setting 
such as electronic health records (EHRs), the goal is usually to 
find a broad characterization of a whole patient from that 
patient’s diverse assemblage of text and structured data. How 
to combine these pieces of evidence into a patient-level 
judgment is an area of active research. Moreover, in clinical 
text, dictionary matching for a symptom like “hypertension”
must be augmented by fine-grained algorithms to ensure that 
the symptom is not negated (e.g., “no complaints of …”), 
about someone other than the patient (e.g., “family history 
of”), or a host of other possibilities. Textual variants of these 
fine-grained patterns abound as well, spawning natural 
language processing (NLP) methods to find concepts of 
interest from acceptable textual contexts.
Therefore, we aim to incorporate arbitrary NLP-derived 
features into information retrieval (IR) methods on clinical 
text, allowing for greater control of the granularity in search. 
Our main contribution is the aligned-layer information 
retrieval model, which we specify by defining the “layered” 
nature of text and the nature of phrases in this setting. This 
model is a straightforward extension of the language modeling 
approach to IR and its feature-centric successors.
We adopt the “layer” terminology from the language resources 
community in which, for example, treebanking and 
propbanking are different layers of annotations on the same 
text. The crucial contribution in our work is a model in which 
all text-derived “layers” are aligned by token, and can be 
utilized and scored simultaneously during search. 

After describing our aligned layer approach, we report on a 
preliminary system implementation and evaluation of the 
model. For our evaluation, we focus on the problem of cohort 
identification within clinical notes from the EHR.

Related Work

Preliminary explorations with concepts (from the Unified 
Medical Language System (UMLS)) in language modeling
have met with moderate success [1-3] in the past. Language 
modeling in IR [4-6] builds on a rich tradition of probabilistic 
IR [7], and has a successful history of ranking documents 
based on well-motivated textual features. The most 
commonly-used textual features are from Metzler and Croft’s 
dependence model, modeling the probabilistic relationships 
between query terms (and a candidate document) as Markov 
Random Fields (MRFs). These term–term dependencies 
significantly outperformed the original bag-of-words language 
modeling approaches to IR from which they arose[4; 5].
Subsequently, query hypergraphs made it possible to model 
higher-order dependencies (e.g., multiword–multiword or 
multiword–term dependencies) [8]. While the representational 
power of these feature-based models allows for arbitrary non-
textual features as well (e.g., named entities or dependencies,
such as we introduce here), non-textual features have received 
minimal attention in the literature.
Recent work on joint text and concept search [2] and split-
layer language models [1] extended the notion of mixing 
different document representations together [9; 10]. Arising 
out of the medical domain, these techniques all showed some 
benefit to considering multiple “layers” simultaneously. Our 
work here extends the discussion of language modeling layers, 
pushing the question of what semantic representations (or 
granularity thereof) are effective for IR.
Positional language models [11] attempt to model the intuition 
that closer textual proximity can correspond to greater 
association. This shares an important intuition with aligned-
layer models: position is important in IR. However, our 
accounting of position is not to model the textual distance, but 
the content and relationships that are latent within text at the 
same locations. A number of existing studies [1; 2] require an 
NLP preprocessing step prior to indexing the collection, and 
utilize these text-derived features in search. However, these 
attempts fail to allow navigation among, and correspondences 
between, those structures.
The task of query formulation [12] is somewhat upstream task 
to our layered models; query formulation can include the 
introduction of term dependencies [13], weighting of terms
[14], query expansion [15], and the parameterization of 
associated weights according to additional corpora [16; 17].
Our hope is that future query formulation techniques will 
make use of aligned-layer structures. 
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Figure 1 - cTAKES processing is followed by the indexing of 
results into various layers (indexes)

The TREC Medical Records track [18; 19] provided resources 
for  significant  innovation  in  medical  IR,  which  used in this 
paper  for  evaluation:  collections  of  clinical  text,  information 

needs,  and  judgments.  Language  modeling  techniques  have 
been  successful  in  this  clinical  text  setting [2],  as  well  as  in 
health-related  web  search  exemplified  by  the  CLEF  eHealth 
challenges [20].

Methods

We now turn our attention to the aligned-layer retrieval model 
and its implementation for our experiments. Let us assume 
that we run an NLP pipeline as a preprocess; e.g., the clinical 
Text Analysis and Knowledge Extraction System (cTAKES)1

[21]. Developed specifically for clinical text, this pipeline 
produces NLP artifacts as illustrated in the left and middle
Figure 1.

Indexing: Aligning text and NLP artifacts

We represent this NLP-preprocessed text as a finite sequence 
of multiple aligned layers. Specifically, a document or query 
is composed of multiple layers L0, L1, L2,… We reserve L0 to 
be a base layer of the original text; namely, a sequence of 
tokens (optionally stopped and stemmed) by which all other 
layers are aligned.
Figure 2 illustrates a query text (tokens) as a base layer, with 
several underlying layers—part-of-speech (POS) tags, named 
entities (NEs) with mappings to concept unique identifiers 
(CUIs), and two types of dependency parses (left). It then 
shows their translation into aligned layers (right).
Other than the base layer, each layer is an artifact layer, and is 
composed of a sequence of artifacts. For example, in Figure 2,
L2 is named entities, and �� = ��,�, ��,�, ��,�, … =
C0032961, C0151526, C0011209, …. The artifacts are 
aligned with the base layer by storing 2 additional numbers: 

1 http://ctakes.apache.org

start index and length. Thus, a function ��	
(�) on l2,1, a 
named entity spanning the words “preterm delivery,” would 
have ��	
���,�
 = (2,2) since the artifact concerns “preterm 
delivery” and starts at index 2 with a length of 2 tokens. 
Additionally, we define a special relation artifact with a slight 
modification of other artifacts. For relation layers like L3
(stanford dependency parses, in Figure 2), artifacts are
relations between two other artifacts’ locations. We will write 
these as �� = ��,�, ��,�, ��,�, … to emphasize that these artifacts 
are relations. Then, ������(�) and �	����(�) give the position 
and length of each of the relation’s arguments;
���������,�
 = (0,1) points from “pregnancy” to 
�	�������,�
 = �	�����,�
 = (3,1) “delivery.”

Note that the transformation to aligned language layers is 
slightly lossy. In Figure 2 the L3 artifacts corresponding to the 
head and dependent of each dependency relation are not 
preserved—only the L0-aligned spans. The loss is minimal in 
most NLP structures of interest.

Scoring: Terms and phrases

In IR language models, it is common to rank according to 
score(�, �) = �(�) � �(�|�). The conditional probability 
encapsulates the intuition that an ad hoc user trying to find 
document D will try to write an effective query Q. We focus 
our attention on the conditional probability �(�|�).
This is most simply expressed in the standard query likelihood
model with Dirichlet smoothing (with the parameter ��), a 
baseline for language modeling approaches. We write single-
term queries with the notation of the aligned layers above, 
where the a variable in la simply indicates that such term 
queries can be written for any single layer:

               
     � �(��|�) =

#��(�!)"$�#%&('!)
|&|!

|�|!"$                                         (1)

where #�� is the number of occurrences of the argument (a 
query term ��) in the document; #�& is the number of 
occurrences of that argument in the whole collection. 
Similarly, |�|� is the number of artifacts in the document 
from layer la; |&|* counts the same layer’s artifacts in the 
whole collection.
With a layered representation of both queries and documents, 
these term operators allow for querying of artifacts in any 
layer La. The standard query likelihood model in other texts 
[5] is then just a special case of our term query utilizing only 
text layer artifacts L0 (i.e., from Ltext). The smoothed 

text 
tok

l0,0 
pregnancy

l0,1 
with

l0,2 
preterm

l0,3 
delivery

pos tag
l1,0 

span=(0,1)
NN

l1,1 
span=(1,1)

IN

l1,2 
span=(2,1)

JJ

l1,3 
span=(3,1)

NN

named 
ent

l2,0 
span=(0,1)
C0032961

l2,1 
span=(2,2)
C0151526

l2,2 
span=(3,1)
C0011209

stanf 
dep

r3,0 
source=(0,1)
target=(3,1)

nmod

r3,1 
source=(3,1)
target=(1,1)

case

r3,2 
source=(3,1)
target=(2,1)
compound

conll 
dep

r4,0 
source=(0,1)
target=(1,1)

prep

r4,1 
source=(1,1)
target=(3,1)

pobj

r4,2 
source=(3,1)
target=(2,1)

amod

Figure 2 - Aligned layers (tokens, part-of-speech tags, named entities, Stanford dependencies, and CoNLL-X dependencies) for 
a sample query “pregnancy with preterm delivery.” Span, source, and target indices are with respect to the L0 layer's indices.
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probability is also calculated with respect to frequencies in 
layer La. Term queries do not require aligned layers — they 
consider each layer separately.
Probabilities for individual query terms can be calculated 
separately and combined to produce an overall probability. 
This is done implicitly, but can be made explicit with a list 
query; items in the list need not be in the same layer because 
they are each considered individually. A list query also groups 
the items in the list for use in other queries. 
However, list queries ignore the collocation of layered 
artifacts; thus, we define the phrase query. A phrase is two or 
more artifacts from an arbitrary combination of layers,
e.g., ��+�-., the ith artifact in La and the jth artifact in Lb.
Phrases must be specified with ordering o as ordered or 
unordered (True or False), with a window size w to search 
within (measured according to positions in the base layer L0). 

   �/4���+�-. … | �; �, 7
 =
#/4���!8�:<… 
"$

#>?&@'!8':<… A
|&|!

BDE(|�|!,|�|:,… )"$        (2)

The function #phD counts the number of cross-layer phrase 
matches in a document. Having aligned lailbj… to the base 
layer L0, we can check across layers for matches within a 
window. Window length is between the end of the first 
matched artifact, and the beginning of the last matched artifact 
(i.e., the last artifact only needs to have start index within the 
window length; it can end outside the window). Writing lailbj
illustrates that artifacts need not arise from the same layer, and 
will be in different positions within their respective layers 
(though aligned to the base layer L0). However, ordered 
phrases with o=True must additionally consist of only non-
overlapping, sequential artifacts.
Whereas in single-layer queries, a probability estimate would 
consist of all items in that layer, there are now two or more 
layers to consider. It may at first seem that the denominator 
should be the product |�|� � |�|- � …. This would mean: “out 
of all possible multi-layered phrases that could be constructed 
in document D, how likely is the specific construction we are 
looking for?” This choice of denominator would yield sparse 
probability estimates. Instead, we have chosen the size of the 
largest layer stipulated in the phrase. This answers the 
question: “of the artifacts in the largest layer, what proportion 
participate in a phrase consistent with the query?” This may be 
thought of as a backed-off estimate, and is more tractable. The 
choice of a denominator is an interesting area of further 
investigation beyond the scope of this work.
We should also note that this aligned-layer phrase queries 
subsume ordered and unordered phrases of feature-centric IR 
models [6], since those features are simply functions of L0.

Implementation

The fundamental aims of the aligned-layer IR model require 
significant extension in any search engine. We implemented 
an aligned-layer language model via a plugin to Elasticsearch 
with multiple components, tested with Elasticsearch 1.7.2. We 
used cTAKES v3.2 as a preprocess [22], producing character-
aligned artifacts (based on Apache UIMA2). Aligned-layer 
models are similar to searching over these UIMA-based data 
structures, but with scored ranking, across mutiple documents, 
and aligned on tokens instead of characters.
For indexing, each layer was represented as a field within a 
document. For our evaluation and analysis, we generated the 
an index with the following fields:

2 http://uima.apache.org

� Ltext: Word tokens, as identified by the cTAKES 
tokenizer; this is considered the base layer L0

� Lcui: Concept Unique Identifiers (CUIs), as mapped 
from the UMLS Metathesaurus by cTAKES

� Ltui: Type Unique Identifiers, a many-to-one mapping 
that groups concepts (CUIs) into semantic types 
(TUIs)

� Llemma: Normalized by a version of the National 
Library of Medicine's (NLM) Lexical Variant 
Generator (LVG)

� Ldep: Conll-U dependency parses from Clear Parser 
[23] trained on treebanked clinical text from Mayo 
Clinic

� Lpos: Part-of-speech tags produced by the OpenNLP3

MaxEnt POS tagger, trained on treebanked clinical 
text from Mayo Clinic

Each artifact was marked with its span (position and length, in 
tokens) via Lucene Payloads; this is a trivial marking for the 
base layer of text L0, but can be significant in other layers, 
such as for multi-word expressions in the CUI layer of Figures 
1 and 2. In addition, the size of each field within a document 
was stored as metadata with that document at indexing time.
Queries are scored in Elasticsearch and Lucene via a highly 
optimized scoring interface. However, our scoring functions 
cannot be represented within that original structure; for 
example, the Lucene implementation of Dirichlet smoothing 
on a language model fails to divide by the collection 
frequency in some cases. Therefore, we implemented scoring 
via Elasticsearch Script Queries, which are typically used in a 
filtering context but here provide us the flexibility to score 
according to the models defined above.
Because they make use of aligned-layer terms and phrases, 
queries must be constructed and parsed differently than in 
other search systems. We implemented our own query parser 
in JavaCC to term and phrase operators in the aligned-layer 
query language.

Task and Experiments

We provide a preliminary evaluation of aligned-layer 
language models, and of our Elasticsearch-based 
implementation in particular, on the task of patient cohort 
identification as exemplified in the 2011-2012 Text Retrieval 
Conference (TREC) Medical Records Track, or TREC-Med 
[18; 19]. In brief, there were 81 topics (34 from 2011, 47 from 
2012) such as “patients with hearing loss,” and the task was to 
return lists of relevant patient visits (a de-identified surrogate 
for whole patient records) from among 17,198 possible visits.
System-produced lists of visits were compared with human 
relevance judgments (which were gathered for the TREC-Med 
2011-2012 competitions).
Table 1 shows how the same query is represented across our 
evaluated approaches. As a baseline test TXT, we used 
unstemmed, stopped TREC-Med queries with the standard 
query likelihood model -- namely, term queries on Ltext. A
second baseline was CUI, where we used term queries on Lcui.
In aligned-layer IR, term operators on multiple layers can be 
weighed together simultaneously for results. We replaced all 
named entity mentions in the query with the first-matched 
CUI, mixing the two layers in MIX. Since the cTAKES Named 
Entity Recognition (NER) module actually returned a set of 
CUIs per named entity, we included a model CUI-LS in which 
named entities were replaced with all of the CUIs associated 
with the same span, combined in a list. Next, we augmented 

3 https://opennlp.apache.org
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the CUI list with a #ph containing Ltext terms corresponding to 
any named entities, terming this PH-LS.

Table 1 - Eight versions of aligned-layer queries for Topic 
125. #p are phrase queries, #l are list queries, others are term 
queries.

Searching for an optimal formulation and weighting of queries
is outside the scope of this paper. However, for each of the 
above approaches, we also implemented a version with the 
Markov Random Field (MRF) “term” dependence model [24],
which attempts to move beyond bag-of-words (BOW) models.
Comparing the TXT-MRF row to the TXT row in Table 1
illustrates the behavior of this model: it tries out, with 
appropriate weights, the possibility that a multi-layered query
may have phrases within it. We implemented a sequential 
dependence model with a limit of 5 aligned-layer components. 
These “term” dependence versions are marked as -MRF.

Results

We used mean average precision (MAP) as the primary 
evaluation measure for evaluation. MAP provides a single-
figure measure of quality across recall levels [25]. While 
TREC-Med 2011 reported bpref [26] as its primary evaluation 
metric, and TREC-Med 2012 reported infAP [27], we here 
report the mean average precision (MAP) due to its stability 
for both training and testing in previous work [28; 29]. Table 2
shows the MAP scores, where we have separated the topics 
from TREC-Med 2011 (left) and 2012 (right). 

Table 2 - Retrieval performance for a range of possible 
aligned-layer models

2011 2012
Model BOW MRF BOW MRF

TXT 0.2960 0.2936 0.2152 0.2224
CUI 0.3042 0.3119 0.3126 0.3101
MIX 0.2807 0.2847 0.2215 0.2167

CUI-LS 0.3076 0.3095 0.2161 0.2120
PH-LS 0.3185 0.3167 0.2172 0.2126

While this performance is below the state-of-the-art, it is 
interesting to note that it is layers with CUIs that obtain the 
highest performance in these tests (CUI-BOW on 2011 queries, 
and PH-LS-BOW on 2012 queries). Without text-layer query 
expansion, query logs, clickthrough data, or the like, another 
well-motivated, semantically-rich layer seems to be beneficial.

Discussion

For aligned-layer language models, it is interesting to ask 
whether there is the possibility of fine-tuning results on 
individual queries. Here, then, we consider one of the worst-
performing queries, topic 121, and seek to write aligned-layer 

queries that would improve those particular topics.
Topic 121 is “Patients with CAD who presented to the 
Emergency Department with Acute Coronary Syndrome and 
were given Plavix.” The CUIs found were C0948089 (acute 
coronoary syndrome), C0010068 (coronary heart disease), and 
C0039082 (syndrome) – note the NER did not find the 
medication Plavix, or its generic form, clopidogrel. The 
highest scoring model on this topic was MIX-BOW=0.0639. In 
the event of a failed detection, we may consider using some 
kind of backoff model to less-specific expressions.

� In place of plavix, we searched for a dependency 
relationship where the head word has a lemma “give,”
and the child is any word with a proper noun. It then 
weights that relation alongside the term plavix. This 
brought the MAP to 0.0803.

� In place of presented emergency department, we 
considered any verbs that might describe a patient's 
arrival. We stipulated that there should be some verb 
in a dependency relationship with the phrase 
“emergency department.” This brought the MAP to 
0.0867.

The multi-layered queries clearly allow for greater coarseness 
or fineness according to the needs of a query.

Conclusion

We have introduced aligned-layer language models, a novel 
approach to IR that incorporates the output of other NLP 
systems. Core to this contribution are the definition of layers, 
alignment, and multi-layer scoring models. We have shown 
that this system can represent standard IR queries, as well as 
formulate multi-layered queries that were previously 
impossible. A case study demonstrates how the aligned-layer 
approach may feasibly be further extended to customize 
linguistic granularity to specific queries.
An open question of the proposed approach is how to design 
the layers for different corpora. Since different corpora 
contain variegated domain knowledge, we could design 
individualized layers for each corpus. In future work, we will 
further explore how our aligned-layer index can serve as a 

Layers Query representation

TXT coinfected hepatitis c hiv 

CUI cui:C0019196 cui:C0019158

MIX coinfected cui:C0019158 hiv

PH-LS coinfected #l(cui:C0019158|hepatitis) hiv

TXT-MRF coinfected^0.85 hepatitis^0.85 c^0.85 hiv^0.85 #p(8|true|coinfected|hepatitis)^0.1
#p(8|false|coinfected|hepatitis)^0.05 #p(8|true|hepatitis|c)^0.1 #p(8|false|hepatitis|c)^0.05
#p(8|true|c|hiv)^0.1 #p(8|false|c|hiv)^0.05 #p(12|true|coinfected|hepatitis|c)^0.1
#p(12|false|coinfected|hepatitis|c)^0.05 #p(12|true|hepatitis|c|hiv)^0.1 #p(12|false|hepatitis|c|hiv)^0.05 
#p(16|true|coinfected|hepatitis|c|hiv)^0.1 #p(16|false|coinfected|hepatitis|c|hiv)^0.05

CUI-MRF cui:C0019196^0.85 cui:C0019158^0.85 
#p(8|true|cui:C0019196|cui:C0019158)^0.1#p(8|false|cui:C0019196|cui:C0019158)^0.05 

MIX-MRF coinfected^0.85 cui:C0019158^0.85 hiv^0.85 #p(8|true|coinfected|cui:C0019158)^0.1 
#p(8|false|coinfected|cui:C0019158)^0.05 #p(8|true|cui:C0019158|hiv)^0.1 #p(8|false|cui:C0019158|hiv)^0.05 
#p(12|true|coinfected|cui:C0019158|hiv)^0.1 #p(12|false|coinfected|cui:C0019158|hiv)^0.05 

PH-LS-MRF coinfected^0.85 #l(cui:C0019158|hepatitis)^0.85 hiv^0.85 #p(8|true|coinfected|#l(cui:C0019158|hepatitis))^0.1 
#p(8|false|coinfected|#l(cui:C0019158|hepatitis))^0.05 #p(8|true|#l(cui:C0019158|hepatitis)|hiv)^0.1 
#p(8|false|#l(cui:C0019158|hepatitis)|hiv)^0.05 #p(12|true|coinfected|#l(cui:C0019158|hepatitis)|hiv)^0.1 
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corpus analysis tool for quantitative representativeness of 
linguistic features; this would further drive a model to 
automatically design and select layers. In addition to this 
manual approach to exploring the linguistic content, we will 
learn parameters and weights for the model to optimize 
performance on IR tasks. Finally, we will release the code for 
aligned-layer language models to the open-source community.
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