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Abstract

People with diabetes experience elevated blood glucose (BG) 
levels at the time of an infection. We propose to utilize patient-
gathered information in an Electronic Disease Surveillance 
Monitoring Network (EDMON), which may support the identi-
fication of a cluster of infected people with elevated BG levels 
on a spatiotemporal basis. The system incorporates data gath-
ered from diabetes apps, continuous glucose monitoring 
(CGM) devices, and other appropriate physiological indica-
tors from people with type 1 diabetes. This paper presents a 
novel approach towards modeling of the individual’s BG dy-
namics, a mechanism to track and detect deviations of elevat-
ed BG readings. The models were developed and validated 
using self-recorded data in the non-infection status using Dex-
com CGM devices, from two type 1 diabetes individuals over a
1-month period. The models were also tested using simulated 
datasets, which resemble the individual’s BG evolution during 
infections. The models accurately simulated the individual’s 
normal BG fluctuations and further detected statistically sig-
nificant BG elevations.
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Introduction

Diabetes mellitus is a chronic disease that causes blood 
glucose (BG) metabolic disorder [1], either due to failure of 
the pancreas beta cells to produce insulin (type 1) or failure of 
the body to react to insulin in the proper way (type 2) [2].
Many people with diabetes strive to control their BG levels as 
close to the normal range as possible to avoid medical 
complications. In this regard, many diabetes self-management 
applications and devices have been developed to support this 
patient group, of which almost all of them take the ubiquitous 
nature of mobile devices as an advantage to base their 
development [3-6]. Moreover, diabetes self-management 
applications and devices have shown feasible to integrate with 
the patient’s Electronic Health Record system [7-9]. The 
advent of information technology and availability of bio-
sensors and point of care technologies have also paved the 
way for quantified self and an easy near patient testing [10; 
11]. These advancements have further enhanced the 
opportunity of using the individual’s diabetes data and other 
physiological indicators for secondary purposes. 
People with diabetes experience elevated BG levels when in 
infectious state [12; 13]. A positive correlation between high 
BG levels and infections has been demonstrated in the cases of 
Influenza, Cholera, Plague, Ebola, Anthrax and SARS [14; 
15]. Use of BG levels for an early outbreak detection has been 

suggested in works of literature [13; 14; 16-19]. For example, 
Granberg et al. [19] introduced an automatic infection 
detection system based on the individual’s BG levels. Årsand 
et al. [14] described the system architecture, model and 
requirements of disease surveillance based on patient 
observable parameter, i.e. blood glucose. Botsis et al. [20]
assessed the development of electronic disease surveillance 
systems for detecting infections at the early stages, i.e. during 
the incubation period. Aside from these potential methods, no 
practical way of facilitating this has been identified.

Figure 1 - Proposed EDMON System Architecture.

We propose the development of an Electronic Disease Surveil-
lance Monitoring Network (EDMON), which may support the 
detection of infections before the onset of the first symptoms. 
The system incorporates data gathered from diabetes apps, 
CGM devices, and other appropriate physiological indicators 
from people with type 1 diabetes. It consists of five different 
modules, as shown in Figure 1, with different functionalities; 
data collection, BG profile, analysis, reporting, and infor-
mation dissemination modules. The task of the data collection 
module is to gather the individual’s diabetes data and other 
physiological indicators from diabetes apps, wearables, and 
sensors, whereas BG profile module will make a prediction of 
individuals’ upcoming BG levels based on past status. The 
analysis module will analyze the individual’s physiological
indicators and compare the predicted and actual BG levels for 
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any statistically significant deviations. It also aggregates and 
determines the presence of any aberrant pattern within a clus-
ter of people based on a spatiotemporal basis. If outbreak is 
detected, the reporting module will prepare the information in 
a way suitable for the end users, whereas the information dis-
semination module will handle the delivery of the information
for the end users. Generally, the objective of the EDMON 
project is to design and develop an electronic disease monitor-
ing network based on inputs from people with diabetes, which 
can track real-time BG levels of each individual independently 
and detect a cluster of infected people with statistically signif-
icant BG deviations on a spatiotemporal basis. This paper pre-
sents the first step of the EDMON development with modeling 
of the individual’s BG dynamics. We consider the develop-
ment of the personalized model as the core part of the 
EDMON system and describe the details of our approach in 
the next sections.

Materials and Methods

Materials 

The models were developed using one-month BG data from 
two type 1 diabetes people, as shown in Figure 2, sampled 
using Dexcom CGM devices. The actual self-recoded data 
were used to develop and validate the model fit with 
individuals’ BG dynamics in the non-infection state. We also 
generated simulated datasets that resemble the individual’s 
BG fluctuations during infections, as shown in Figure 3. The 
simulated datasets included unexpected elevated BG levels for 
a certain period of time with some random and steady 
increments per hours (��� ����	 ). The unexpected BG 
variations were defined as 1) any unstructured variations 
outside of the individual’s modeled structured variations and,
2) inherent stochastics phenomena of the BG dynamics that 
cannot be quantified with the developed models using the key 
diabetes parameters (e.g. BG, insulin intake, physical 
activities, and dietary habits). The simulated datasets were 
used to test the model’s performance in capturing the assumed 
infection-related, unexpected, elevated BG readings. The 
algorithm was developed using Matlab version R2015b.

Methods

Our models combined a novel approach for BG monitoring 
and outlier detection, which was based on a set of autoregres-
sive models and predicts the individuals’ expected BG values 
on an interval basis. The actual BG value was compared with 
the predicted intervals, which was generated using autoregres-
sive (AR) model [21], Eq. (1), and autoregressive moving 
average (ARMA) model [21; 22], Eq. (2).
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Where, 
(�) are autoregressive coefficients, �(�) are mov-
ing average coefficients, and 
(�) is the nth BG value, and 
�(�) are Gaussian noise with zero mean and constant vari-
ance ��

�.
The prediction intervals [23-25] were computed based on the 
empirical distribution of errors between the predicted and ac-

tual BG values for the prediction horizon under consideration, 
using Eq. (3).

            
�(�) = 
(�)+ �� �	 !"#�[�$(�)]                     (3)

Where, 
�(�) is the predicted BG intervals, 
(�) is the mod-
el’s point BG prediction, �� �	 is the assumed errors distribu-
tion, % is level of significance, and "#�[�$(�)] is variance of 
the errors for a specific window size, &. The prediction inter-
val was computed and compared to various values of window 
size and level of significance. The optimal prediction interval 
was reported with a window size (&) and level of significance 
(%).
MATLAB system identification toolbox along with partial 
autocorrelation function (PACF) were used to identify the 
optimal model order. The empirical distribution of errors be-
tween the actual and predicted values were assumed to follow 
a normal distribution.

Figure 2 - Plot of the CGM data. [x and y-axes represent 
CGM’s sampling time and BG level in mmol/l, respectively].

Figure 3 - Simulated BG values in response to infections (Top 
-non-infectious BG levels, Bottom -simulated infection related 
BG levels). [x and y-axes represent CGM’s sampling time and 

BG level in mmol/l, respectively].
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Results

Autoregressive (AR) Model

For both the first and the second subject, an autoregressive
(AR) model of order five (p = 5) was found to be optimal for 
the point BG prediction and fitted best with a root mean 
square error (RMSE) of 0.2159 and 0.3068 respectively. For 
the first subject, the predicted interval was found to be optimal 
with a window size of & = 100 and a statistically significant
level of % = 0.01, see Figure 4. The predicted interval for the 
second subject was also found to be optimal with a window 
size of & = 200 and a statistically significant level of % =
0.01, see Figure 5.

Figure 4 - Subject one- autoregressive (AR) model. [x and y-
axes represent CGM’s sampling time and BG level in mmol/l,

respectively].

Figure 5 - Subject two - autoregressive (AR) model. [x and y-
axes represent CGM’s sampling time and BG level in mmol/l,

respectively].

Autoregressive Moving Average (ARMA) Model

For both subjects, the optimal autoregressive moving average 
(ARMA) model order was found to be an autoregressive order 
of 6, and a moving average order of 2. The point BG predic-
tion for the first subject resulted in a root mean square error 
(RMSE) of 0.2114. The predicted interval was found to be 

effective with a window size of & = 100 and a statistically
significant level of % = 0.01, see Figure 6. The point BG pre-
diction for the second subject also resulted in a RMSE of 
0.2915. The predicted interval was found to be effective with a 
reasonable window size of & = 200 and a statistically signif-
icant level of % = 0.01, see Figure 7.

Figure 6 - Subject one - autoregressive moving average 
(ARMA) model. [x and y-axes represent CGM’s sampling time 

and BG level in mmol/l, respectively].

Figure 7 - Subject two- autoregressive moving average 
(ARMA) model. [x and y-axes represent CGM’s sampling time 

and BG level in mmol/l, respectively].
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Figure 8 - Detection capabilities of the developed algorithm 
on testing data. [x and y-axes represent CGM’s sampling time 

and BG level in mmol/l, respectively].

Deviation Detection/Surveillance 

The algorithm was tested with simulated datasets, for its capa-
bility of detecting unexpected BG variations that may occur 
during infections, as shown in Figure 3. The developed algo-
rithm successfully detected statistically significant elevated 
BG readings, as shown in Figure 8. As clearly shown in the 
Figure, the algorithm was highly sensitive to the slope, and 
clearly captured the rise and fall of the individual’s BG read-
ings.

Discussion

The recent advancement, syndromic surveillance uses health-
related data that precede diagnosis and laboratory verification 
to produce signals with sufficient probability of outbreaks to 
warrant further actions [26-30]. The development of strategies 
for early detection of outbreaks is worthy, given the limita-
tions of the existing disease surveillance systems. We present-
ed a modelling approach for the early detection of infections 
in people with diabetes. This set of models were developed as 
part of the EDMON system that will rely on real-time data 
collection from people with diabetes. Our approach was capa-
ble of detecting statistically significant and unexplained BG 
elevations of various size and duration.
One of the limitations of our study is the sample size. We also 
have used only BG as the input variable. Furthermore, the 
assumption of a normal error distribution could be a limita-
tion, which needs further exploration. To alleviate these limi-
tations, we plan to explore other more robust approaches and 
involve real infection related BG data, more input variables 
(insulin intake, physical activity, and diet) along with a larger 
sample size. 

Conclusion

EDMON is an early outbreak detection system that relies on
self-gathered health-related data from people with type 1 dia-
betes. In this paper, we presented a novel approach that can 
track BG levels and detect statistically significant BG eleva-
tions. The testing and validation of this approach on a large-
scale basis could support the development of an outbreak de-
tection system based on real-time data collection from people
with diabetes. We believe such efforts may lay the foundations 
for the next generation disease surveillance systems and pro-
voke further thoughts in this valuable field.
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