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Abstract

The shift to electronic health records has created a plethora of 
information ready to be examined and acted upon by those in 
the medical and computational fields. While this allows for 
novel research on a scale unthinkable in the past, all 
discoveries still rely on some initial insight leading to a 
hypothesis. As the size and variety of data grows so do the 
number of potential findings, making it necessary to optimize 
hypothesis generation to increase the rate and importance of 
discoveries produced from the data. By using distributed 
Association Rule Mining and Contrast Mining in a big data 
ecosystem, it is possible to discover discrepancies within large, 
complex populations which are inaccessible using traditional 
methods. These discrepancies, when used as hypotheses, can 
help improve patient care through decision support, population 
health analytics, and other areas of healthcare.
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Introduction

Within the past two decades health records have moved from 
the paper realm to the digital [1]. As the amount of digitized 
health data has grown, data mining has been used to make sense 
of it all. Knowledge that took a lifetime of observation to gain 
is now obtainable in an instant, given enough data, helping 
hospitals and researchers to improve their quality of care [2]. 
For example, the areas of decision support and intervention 
have both benefited greatly from the application of data mining
[3]. Knowledge can now be learned directly from electronic 
health records using algorithms such as decision trees, 
association rule mining (ARM), or other pattern recognition 
systems then acted on by care givers, doctors, and researchers
[4]. While this has been a boon to healthcare both at the 
individual and institutional levels, it has caused a shift in 
medical research from hypothesis driven to data driven, often 
removing the hypothesis of “why” from the equation [5]. This 
“why” is important, however, as treating the symptoms does not 
always treat the root issue, and so using this knowledge to form 
hypotheses becomes an important task.

As the volume and variety of healthcare data grows, so does the 
computational power required to perform analysis. Though a 
small single-provider practice may be able to run data mining 
against their data on a single machine, large hospitals or 
government databases hold too much data for a single machine. 
ARM, for example, increases exponentially with the number of 
attributes available. Given n attributes, there are 2n-1 unique 
combinations of those attributes [6]. Distributed computing 
techniques allow us to address this exponential scaling factor. 

Cluster computing enables distributed analysis of data and 
storage of large datasets by utilizing an array of machines. 
Performance can be improved by adding more machines [7]. 
Through distributed computing in a big data ecosystem it is 
possible to utilize ARM on datasets on which it would not be 
possible otherwise. There are several reasons to apply ARM, a 
special case of Pattern Mining [8], in healthcare applications. 
Pattern Mining algorithms work by finding groups of 
items/events/attributes that appear together at higher than 
expected frequencies. This differs from more traditional 
statistical and machine learning techniques that may not scale 
well or have limited explanatory power and intuitively
understandable action plans in medicine. While traditional 
techniques often evaluate a large number of conceivable 
combinations of attributes, Pattern Mining continuously filters 
its patterns so that only those which are significant (user 
defined) are ever evaluated [6]. Using these approaches on 
health data can still generate millions of rules, many of which 
can be too general or specific for the research at hand.

While studying each rule on its own may be preferable, it is 
untenable due to the exponential number of co-occurrence of 
comorbidities and demographic information. It is necessary to 
define a way to filter these hypotheses based on their 
importance and impact. To solve this issue, human-directed 
hypothesis generation can once again come into play through a 
process known as Contrast Set Mining (CSM). CSM is the 
process of using Pattern Mining across a partitioned population 
in order to find differences in their pattern distributions [9]. 
Used in its most basic sense, it can be a tool for classification 
and prediction. In the last decade, CSM has been applied to 
many data-rich areas, such as genome wide association studies, 
or disparities in preventative healthcare [10]. Although the 
ability to use CSM for classification is powerful, patterns alone 
do not explain why those differences exist or why and how they 
are important. This, combined with the number of patterns 
which must be compared, creates four challenging research 
problems: removing redundant or insignificant patterns, 
determining the comparative importance of the patterns, doing 
both at a large scale, and determining why these patterns exist.
One of the primary advantages of using ARM and CSM is the 
explainability of results. The patterns detected are clearly 
defined. This is one of the main limitations of many state-of-
the-art machine learning algorithms such as support vector 
machines (SVM) and deep learning on Artificial Neural 
Networks (ANN); the explanation for classification is
convoluted by highly complex models. In a clinical setting, it is 
important to have transparency in any decision making process. 
Although decision trees also provide understandable results, 
they form decisions by considering a single feature a a time in
a greedy fashion; whereas CSM may consider arbitrarily large
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Figure 1 - Pattern mining, contrast mining, and descriptive analytics using a big data approach. Transactions (records) and item sets
(combinations of demographic and healthcare information) are distributed across nodes with calculations done in parallel unless 

aggregation is required

combinations of features at once. 

Methods
Pattern mining, at its most basic, can be thought of as applied 
counting. It is used to find a collection of attributes that occur 
together above a user-defined frequency. The data, D, can be 
described as a list of transactions, T. In this research, a patient 
is considered as a transaction. Each transaction contains a set of 
items, i, each of which exists in the set of all possible items, I. 
Patients’ demographic information, diagnosis-related groups, 
and risk levels are potential items for a transaction. Any 
arbitrary collections of items, {i}, is considered an itemset.
itemsets with a support above the user-defined minimum are 
considered frequent, with support calculated as ���(�) =
���	
(�)

|�|
. While the Apriori approach [6] works well for finding 

common patterns, it quickly exhausts the resources of a normal 
machine when rare patterns are sought. Common patterns may 
be found even with a high support; however, rare patterns 
require a very low support threshold, allowing for near 
exponential intermediate pattern generation and requiring
either numerous reads or very large amounts of memory.

In addition to the volume challenge, the variety of data 
generates a large amount of intermediate data. During the 
exploratory analysis, the number of potential itemsets for our 
data collection reached hundreds of millions, requiring 
terabytes of memory to index. In order to generate as many 
patterns as possible, we utilized a Big Data environment to 
handle large datasets and distributed approaches, which are 
necessary to tackle scaling challenges. To handle intermediate 
data of this magnitude, we developed a suite of distributed 
Apriori tools built on Apache Spark as well as the Apache 
Hadoop Distributed File System (HDFS) to store the initial, 
intermediate, and final data. We utilized several low-cost 
commodity machines equivalent to a system with 18 cores and 
144 GB of RAM. For this study, the computing environment 
consisted of a cluster of 9 Intel NUC machines, each equipped 
with 16GB of RAM, an Intel i3 processor, and 1.5TB hard 
drive. We were able to perform the computations by 
distributing the data across all nodes and performing each step 
of pattern mining on the data. Most computations could be done 
in parallel, such as candidate generation and filtering for 
minimum support, while counting was done by aggregating 
across the cluster (Figure 1). 

In association rule mining, the next process would be to 
generate rules based on confidence. Rules are generally of the 
form {, �} � {�}, with the confidence calculated as

����������({, �} � {�}) =
���({, �, �})
���({, �})

Rule mining can be over-generative when used for 
classification between groups, with most rules either lacking 
the class label or with the class in the antecedent. In cases such 
as these Contrast Set Mining (CSM) can be used instead, a 
special case of ARM in which the class is always the 
consequent [9]. CSM is normally applied during ARM in order 
to only produce patterns which strongly indicate a class. 
Patterns that have a measurable difference in support are ranked 
to find those of highest importance. Many different techniques 
exist for filtering and prioritizing contrast sets, each with its 
own strengths and weaknesses. All rely on some measure of 
difference in support. This lends itself well to a distributed 
approach, as the millions of contrast sets can be grouped, 
measured, and filtered, allowing even large datasets to be 
instantly processed and analyzed in parallel for quick data 
discovery as depicted in Figure 1.

A key goal was reporting mining results that were statistical 
significant or worthy of conducting further research for 
vulnerable populations. Patterns rejecting the null hypothesis 
��: �������(�, ����������) = �������(�, ����������)
using the Z-Test with high contrasts were selected. Some 
patterns included minority populations with sample sizes too 
small to produce an acceptable p values (<0.05) were also 
selected, to retain visibility into these vulnerable populations. 

In our implementation, we designed the system to flexibly
apply various filters for different goals after removing non-
significant patterns. By setting a target class we could focus on 
those patterns that had a stronger support in one class than the 
other. This filtering mechanism allowed us to focus on patterns 
that were more common in patients that experienced drastic 
declines in health. It is important to choose the correct measures 
of significance and importance based on the types of patterns 
sought. For this we used three significance measures: growth 
rate, largeness (support difference), and confidence. Though 
these measures could be calculated in parallel, sorting could 
not. This final step was done on a single node as shown in 
Figure 1. 

Growth rate is represented as the ratio between supports. 
This measure is preferred for rare itemsets. The growth rate 
represents the idea that as more items are added to a pattern, the 
supports get smaller, and thus differences which may have been 
imperceptible with smaller, common itemsets become more 
pronounced as they grow [14]. 
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 ��!�"���(�) = max
#$%

���(�, &���#)

���'�, &���%*

Largeness is represented as the difference between two 
supports as shown in the following equation. It is most useful 
when dealing with large supports, a difference between 80% 
and 60% is greater than the difference between 1% and 5%. 

�� �����(�) = +���(�, &���#) - ���'�, &���%*+

Any pattern with a support difference greater than a user-
defined value . is known as large. As mentioned previously, 
patterns with statistically different (p < 0.05) or existent 
supports are known as significant. Those patterns which are 
both significant and large are known as deviant [15]. As 
largeness works with high valued supports, the patterns 
generated may have a relatively small growth rate. 

Confidence is the conditional probability of a Classi given a 
certain pattern. That is to say, how strong is pattern X at
predicting Classi. The following equation defines the 
confidence metric, freq counts the occurrences of an itemset, 
and the denominator sums to the total frequency count of 
pattern X in both classes. 

����(� � &���#) =
���/(�, &���#)

���/'�, &���%* +  ���/(�, &���#)

Once these measures had been calculated, a post-processing 
step was run so that only closed patterns remained, a pattern 
being closed if there is no super-pattern with the same support
[16]. This works because it is impossible to increase support by 
adding items, as the maximum support of the new pattern is the 
minimum support of all subsets.

������(�): 2345 ���(�) > ���(6)

Finally, we obtained three different top-ranked lists, sorted by 
growth rate for rare contrast sets, or support difference for 
common, and confidence for both. These three ranked lists of 
contrast sets provided a broad range of hypotheses to study and 
act on for healthcare improvement. In order to ensure due
diligence, all results generated using these methods were 
systematically validated against the raw data, ensuring all rules 
were accurately portrayed.

Experiment Design

The population this data comes from is the LIGHT2

(Leveraging Information Technology to Guide Hi-Tech and Hi-
Touch Care) project, with goals of improving patient health 
through risk detection, utilization prediction, prevention, and 
intervention. Patients in the population were primary care 
patients in the University of Missouri Health System as well as 
enrolled in Medicare or Medicaid. Patients were enrolled 
between February and July of 2013, with 9,581 patients still 
enrolled by the time the first risk tier evaluation was given on 
October 1, 2013. All data on the patients’ diagnoses, outpatient 
visits, and hospital visits were based on the University of 
Missouri Health System electronic medical record, as 
maintained by clinicians between 2012 and 2014.

For this case study, the attributes used were age (under 65, over
65), sex, marital status, ethnicity, race, language, and 42 
diagnosis-related group (DRG) codes applied to the patient over 
the previous year. This gave a minimum possible itemset size 
of seven for every patient, as each patient had at least one 
chronic condition. This resulted in 248 (>280 Trillion) possible 
attribute combinations for exploratory analyses. 

Table 1 - Tier definitions for the LIGHT2 project, based on 
hospital utilization and number of chronic conditions

Tier Definition (based on past 12 months)
1 Healthy Chronic conditions defined by the Centers for 

Medicare & Medicaid Services (CMS) = 0
2 Chronic

Stable
Chronic conditions 1 AND (hospitalizations = 0 
AND outpatient visits < 5)

3 Chronic
Unstable

Chronic conditions � 1 AND (hospitalizations = 1 
OR outpatient visits from 5 to 12)

4 Complex 
Care

Chronic conditions � 1 AND (hospitalizations > 1 
OR outpatient visits > 12)

One essential method of the LIGHT2 project was its risk tier 
schema, separating patients into one of four tiers based on 
healthcare utilization (Table 1). The lowest, or “Healthy,” tier 
is Tier 1, patients who had not been diagnosed with any of the 
27 CMS-defined chronic conditions. For patients with any 
chronic conditions, Tiers 2, 3, and 4 were based on the number 
of outpatient clinic visits and hospital visits during the prior 12
months. Utilization was measured separately for (a) outpatient 
visits, which may be part of normal care management, and (b) 
hospital-based visits, which usually entail emergency visits, 
observational stays, or hospital admission. Patient tiers were 
recalculated every two weeks.

Table 2 - Population statistics for patients stable in Tier 2, 
and those who moved from Tier 2 to Tier 4. Attributes are a 
combination of 6 required demographics and DRG codes

Population Gap
Days Size Min 

Attrs
Avg 
Attrs

Med 
Attrs

Max 
Attrs

Stable N/A 2854 7 10.3 10 23
High Risk 30 170 7 9.5 9 17

In order to generate potentially actionable data, we chose to 
focus on those patients who started in Tier 2, “Stable” patients 
suffering from chronic disease who are otherwise healthy. From 
there, we compared patients who never left Tier 2 with those 
who left Tier 2 and entered Tier 4 within a 30 day period, 
indicating a catastrophic worsening of health (Figure 2). A 30-
day window was chosen because it indicated multiple 
hospitalizations or a large number of outpatient visits in an 
abnormally short period of time. A two-week buffer was added 
between the end of data collection and the tier movement due 
to tiers recalculations happening every two weeks. 
Observations from this period included attributes responsible 
for tier movement, and thus were not actionable.

Figure 2 - Population creation criteria used for case study. 
Those patients who started in Tier 2 and moved to Tier 4 
within a 1-month window were chosen as a contrast to 

patients who started and remained in Tier 2

Due to the patient privacy regulations of the Health Insurance 
Portability and Accountability Act (HIPAA), detailed statistics 
regarding this population were not available. However, general 
statistics about size and complexity of the different populations
were available (Table 2). One thing that was surprising when 
compiling these statistics was that, overall, the population that 
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stayed in Tier 2 seems to suffer from a higher number of 
comorbidities. This can be explained by the data collection 
process, however: while patients who moved from Tier 2 to 
Tier 4 only had 12 months of data used for analysis, we include
data spanning the lifetime of LIGHT2 when analyzing those
who stayed in Tier 2. Those patients had a longer period to 
accumulate DRG codes from visits. Table 3 provides example 
DRG and demographic codes.

Table 3 - DRG code mappings. This list contains only those 
codes that appear in the contrast sets in Results

Code Condition or Attribute
URIN Bladder, Kidney, and Urinary Tract
IHD Ischemic Heart Disease (Chronic)
COPP Conditions Originating in Perinatal Period
CKD Chronic Kidney Disease (Chronic)
BAA Black or African American
DIAB Diabetes

Results

The top ten itemsets that were strongest indicators of being in
the high risk patient group, moving from Tier 2 to Tier 4 in a
30 day period, are shown in Table 4. The stable group 
comprised 94.4% of patients, while the at-risk group was 5.6%. 
After extracting the strongest contrast patterns based on the
growth rate, we used logistic regression to test how well these 
patterns correlated with the tier movement. The test statistic 
was a distributed chi-squared with degrees of freedom equal to 
the differences in degrees of freedom between the current and 
the null model (i.e., the number of predictor variables in the 
model). Considering a p value less than 0.05 as a significant 
model, 8 of the 10 highest growth patterns were significantly 
correlated with tier movement.
The highest growth rate reported in the first three rows of the 
table means that the support of the three contrast patterns was 
9.593 times greater in the at-risk population. In addition, the 
highest confidence level was also reported for these three 
patterns. This confidence 36.4% means that given a contrast 
pattern, the conditional probability that a patient would move 
from Tier 2 to Tier 4 in 30 days. This may seem low; however, 
since the baseline probability for transitioning to Tier 4 was
5.6%, it showed that a patient that exhibits this pattern was over 
7 times more likely to transition to Tier 4 than an average 
patient. The largeness measures were all over 2% which means 
the percentage of each pattern in Tier movement group was 2%
greater than in the stable group. 
Another interesting aspect of the results was the size of
itemsets; the smallest contrast pattern reported consisted of four 
items. Within the top 10 contrast patterns there were 12 unique 
items. In addition to the DRG Codes given in Table 3, we have: 
over65, 65orLess, Male (M), Female (F), Married, Divorced. 
Of the 12 attributes, 5 were chronic conditions, 2 were sex, 2 
were age, and 1 was race. While chronic conditions were

included in every contrast pattern, marital status occurred in 7, 
sex in 6, age in 5, and race in 2. The highest support among the 
contrast sets reported was 2.9% and the lowest support was 
2.4%. This suggests the high-risk and stable populations were 
composed of many subpopulations. Identified contrasts were
defined by these small populations.
All reported contrast patterns were indicative of increased risk 
of hospitalization. The lowest confidence reported was 25%. 
Although this was a low probability, since the base probability 
of transitioning to Tier 4 is 5%, it suggests a 5-fold minimum 
increased risk of transitioning to Tier 4. The support difference 
was relatively equal between all of the contrast patterns 
reported in Table 4, around 2%. When all support values are 
low, the support difference was not as useful.

Discussion

Using these results, it is possible to identify patients who are at 
risk of having their health deteriorate quickly. Contrast sets 
formed a strong set of interpretable rules, which can be used by 
population health managers and clinicians when choosing 
which patients to spend more time with, and they provide a
great starting point for future research questions.
One of the primary advantages of using ARM and CSM is that 
the results are understandable in a clinical setting, where 
accountability and transparency are paramount. For example, 
the top frequent patterns in Table 4 show that married males
with chronic kidney disease and ischemic heart disease were
significantly more prevalent in the high-risk population. A 
patient fitting this description is highly likely to have increased 
hospitalization within 30 days compared to others with stable 
chronic condition. The third row of Table 4 shows that an
African American female over 65 years old with stable diabetes 
and a history of perinatal conditions also had a high risk of 
imminent worsening health and hospitalization. Each of these 
attributes is a well-known risk factor for poor health outcomes; 
however, these methods identify combinations of risk factors,
which lead to particularly high risk of imminent hospitalization. 
Patients that fit these easily understood profiles could be 
flagged for additional care management by population health 
managers and preventive care by clinicians.
One of the main limitations of ARM and CSM is the 
combinatorial nature of patterns. The methods can create a large 
amount of data. By utilizing a big data environment, we can 
extend the limits of this sort of data mining analysis.

Conclusions

With these findings, we have shown how contrast mining on a 
big data scale can be used on complex datasets for both 
immediate health care improvement and directing future
research in clinical settings. Our findings for the LIGHT2

dataset will be used as a guide for patient prioritization by 

Table 4 - Top 10 frequent patterns with high growth rate for high-risk population (T2-T4: moved from Tier 2 to Tier 4) 

Contrast Patterns (CP) T2-T4 Support Growth Largeness Confidence p-value
URIN, M, Married, IHD, CKD 0.024 9.593 0.021 0.364 0.002
Married, CKD, M, IHD 0.024 9.593 0.021 0.364 0.004
F, over65, COPP, DIAB, BAA 0.024 9.593 0.021 0.364 0.199
URIN, over65, Married, IHD, CKD 0.024 6.715 0.020 0.286 0.008
IHD, CKD, over65, Married 0.024 6.715 0.020 0.286 0.016
URIN, Divorced, COPP, M, 65orLess 0.024 6.715 0.020 0.286 0.026
over65, F, DIAB, BAA 0.029 6.457 0.025 0.278 0.177
M, IHD, URIN, Married 0.024 6.105 0.020 0.267 0.004
Married, IHD, URIN, CKD 0.029 5.596 0.024 0.250 0.004
Married, IHD, CKD 0.029 5.596 0.024 0.250 0.008
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population health managers, as well as helping project members 
find new directions to pursue. The combinations of attributes 
that indicate risk should be provided to population health
managers. While this is being done, clinical researchers can 
formulate more detailed explanations as to why certain 
individuals are prone to experience severe health 
complications. By identifying at-risk individuals earlier, the 
overall quality of care patients receive may be improved.
There are many other large, complex, and new healthcare 
related areas where this method can be applied. This method 
can be applied in areas of disparity, adherence, genetic health, 
and impact of comorbidities. The scalability of distributed 
computing gives researchers the ability to study larger, more 
complex datasets than in the past, while this approach to 
Contrast Set Mining allows for quick exploratory analysis of 
data as a post-processing technique. The combination of these 
attributes removes the complexity involved in multivariate 
analysis and allows for rapid discovery with the need for 
reprocessing, making distributed Contrast Set Mining an 
important tool for clinical and translational research.
The next phase of this work is to construct a contrast set 
classifier for improved prediction of at-risk patients. This data 
set is particularly challenging due to the skewness between 
stable and high-risk populations and complex patterns within 
the high-risk group. Our preliminary results with a direct 
matching on frequent patterns for the high-risk population are 
promising and showing advantages over generic machine 
learning algorithms. Our contrast set classifier was able to 
achieve a balance between sensitivity and specificity (72% and
32%), while decision tree J48 (0%, 0.1%), random tree (5.2%, 
4.7%), Hoeffding Tree (0%, 0%), logistic regression (0%, 0%), 
and Bayesian Net (0%, 0%) struggled for the high-risk 
populations due to the complex patterns shared by subgroups of 
high-risk patients; as we have shown in this paper, the 
predictive power lies in the combination of key attributes. Our 
ongoing effort to correctly classify the stable group (patients 
who stayed in Tier 2) focuses on constructing an aggregate 
metric to assess which population has the strongest indications 
of membership in the group. This metric would likely be a 
combination of growth rate, support difference, confidence, or
other contrast metrics.
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