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Abstract

With the increasing availability of complete full texts (journal 
articles), rather than their surrogates (titles, abstracts), as 
resources for text analytics, entirely new opportunities arise 
for information extraction and text mining from scholarly 
publications. Yet, we gathered evidence that a range of 
problems are encountered for full-text processing when 
biomedical text analytics simply reuse existing NLP pipelines
which were developed on the basis of abstracts (rather than 
full texts). We conducted experiments with four different 
relation extraction engines all of which were top performers 
in previous BioNLP Event Extraction Challenges. We found
that abstract-trained engines loose up to 6.6% F-score points 
when run on full-text data. Hence, the reuse of existing 
abstract-based NLP software in a full-text scenario is
considered harmful because of heavy performance losses. 
Given the current lack of annotated full-text resources to train 
on, our study quantifies the price paid for this short cut.
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Introduction

While abstracts contain only the major results of the 
corresponding journal article in a highly condensed manner, 
the full-text body of scholarly publications makes accessible 
all single pieces of information from scientific studies. Since 
the demand for this maximum level of information is also high 
in the life sciences, the NLM launched a full-text collection 
for a subset of PUBMED abstracts, PUBMED CENTRAL (PMC),1

which currently (April 2017) archives 4.3 million articles and 
is growing at high speed. Given such a bulky resource, 
unlimited access to the information contained in scholarly full 
texts seems both a realistic and rewarding goal, since a great 
deal of relevant biomedical information is only contained in 
the full-text portions of scientific articles and is not mentioned 
at all in the corresponding abstracts of the full texts [1–3] – so 
the information gain from processing full texts can be 
enormous. 
Tanabe and Wilbur [4] were the first to hint at technical 
problems of dealing with special non-ASCII characters, tables
and figures embedded in full texts. Going beyond low-level 
technicalities, within the BIOCREATIVE Gene Normalization 
Challenge, for the first time, evidence was gathered that 
performance dropped significantly when tested on full texts 
[5] instead of abstracts [6].

                                                          
1 https://www.ncbi.nlm.nih.gov/pmc/

Cohen et al. [7] substantiated these warnings that the 
processing of full texts will be more than challenging by 
investigating their intrinsic properties. They conducted an
empirical study in which they investigated different structural 
and linguistic properties of abstracts and their corresponding 
full texts. They found longer sentences in the full texts than in 
the abstracts and much heavier use of parenthesized material 
(e.g., abbreviations, citations, data values, figure/table 
pointers, etc.) in the full texts than in the abstracts. Both 
phenomena make full texts much harder to parse than 
abstracts. Syntax-wise they also gathered evidence that the 
incidence of conjunctions, passives, pronominal anaphora, as 
well as sentence complexity/readability were markedly 
different from full texts to abstracts. However, syntactic 
parsing using the Stanford Lexicalized Parser yielded no 
statistically relevant difference between both genres (taking
ParsEval’s metrics for bracket recall and tag accuracy). Yet, 
POS tagging was more accurate in abstracts than in full texts. 
Analysis errors caused by the increased syntactic complexity 
of full text articles (compared with abstracts) were also 
recognized by Tudor et al. [8]. McIntosh and Curran [9]
further point out that coreference relations (anaphora) between 
sentences play an important role in full texts. Semantics-wise, 
Cohen et al. found that the distribution of named entities such 
as genes/proteins, mutations, drugs, etc. differed between the 
two text genres as well.
Most important for our own work, Cohen et al. also 
investigated the impact these differences had on the 
performance of information extraction tools. They found that 
three common gene mention recognition systems (BANNER, 
ABNER and LINGPIPE) performed much worse on full texts 
than they did on abstracts – F-measures were generally about 
10 points higher on the abstracts than on the full text portions. 
Consequently, the authors advocated retraining models on full 
texts.
If this suggestion is taken seriously, annotated full-text 
corpora have to be supplied. Given the large volume of 
utterances contained in full texts, this is an enormously 
resource-consumptive task. Cohen et al.’s study is based on 
their self-developed CRAFT full text corpus [10] which reflects 
the findings for full text phenomena from [7]. It consists of 97 
(67 publically released) full texts, plus corresponding abstracts 
(comprising nearly 31k sentences or 800k text tokens), dealing 
with mouse genomics. This corpus was annotated for part-of-
speech (POS) and syntactic parsing data, as well as 
proteins/genes as named entities [11].
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The authors carefully discuss the large variation in testing 
conditions, e.g., the types of named entity taggers (BANNER, 
ABNER and LINGPIPE), the types of models being considered 
(trained on the abstract-based BIOCREATIVE II, NLPBA and 
GENIA and the full-text-based CRAFT corpora where, in 
addition, the full set is distinguished from a development set), 
different definitions of the named entity type ‘protein’ and 
different matching criteria for gene mentions). Still, the CRAFT 
study reveals inconsistent results for the ‘gene’ named entity 
recognition problem. For the LINGPIPE system, gains for 
retraining on the full-text corpus amount to 0.18 F-score 
points, but ABNER’s performance drops after retraining 
(increased precision comes at the cost of substantial recall 
losses). BANNER’s results are already competitive with the 
out-of-the-box model so that no retraining on CRAFT-style full 
text corpora is required. The authors summarize their results 
that “retraining the gene mention recognition systems 
unfortunately did not show much improvement” [10, p. 21]
but anticipate a significant improvement if the learning 
problem will be rephrased (see also [10, p. 21]). Note that 
CRAFT is not annotated for any relational information so that 
no empirical data could be collected for this task from this 
resource. The CRAFT study also measured the impact of 
sentence splitting, tokenization, POS tagging and syntactic 
parsing relative to the two text genres—abstracts and full 
texts. For parsing, e.g., substantial improvements of CRAFT-
trained models over standard (non-biomedical) English 
models were found.
Another full-text corpus, ID, remedies the lack of biomedical 
relation annotations. It was supplied for the series of BioNLP 
Event Extraction Challenges starting in 2009, with the second 
round in 2011 [12]. ID contains 30 full texts (more than 5k 
sentences, 150k text tokens) annotated for biomolecular 
mechanisms of infectious diseases that involve associations 
between multiple types of molecular entities, disease-causing 
microorganisms and other organisms undergoing the diseases.
With more than 13k named entities and 4,15k events the entity 
count is comparable to the 2009 Challenge, whereas the event 
count is only approximately one third of the Shared Task 2009 
data. On this data, the top-performing systems scored at 
almost the same level as in 2009 (where abstracts were 
analyzed), with the winner system (FAUST) peaking on 56% F-
score (trained and evaluated on sections of ID full texts).
Since the biomedical NLP community has developed a battery 
of well-engineered analytic engines—starting from domain-
adapted tokenizers, POS taggers and parsers to domain-
specific named entity taggers and relation extractors—one is
tempted to simply reuse these tools and composite pipelines
on full texts in order to unlock the vast amount of still hidden 
information. The fact that almost all of them were developed 
and fine-tuned on abstracts as textual training data does not 
seem to be an issue here. Instead, we claim that moving from 
the abstract to the full-text level of analysis is by no means a 
free lunch. We rather stipulate that classifiers trained on 
abstracts (irrespective of whether they deal with named 
entities or relations between them) will drop significantly in 
performance when run on corresponding full texts due to the
increased level of linguistic, structural and conceptual 
complexity in the latter. Thus, the potential cheap benefit of 
making full texts available, instead of (informationally much 

poorer) abstracts, is likely to disappear. —But at what rate? 
And, is this rate, when quantified, tolerable or not?
In this paper, we deal with the problem of trading off abstract 
vs. full-text processing for the life sciences domain, with focus 
on relation extraction. We thus study the effects of text genres
on system performance by switching between abstract and 
full-text documents. We substantiate our claims by running 
four prominent relation extraction systems, which were top-
performers in the most recent BioNLP 2013 Event Extraction 
Challenge [13]. This selection of systems should guarantee 
that despite the small ‘sample size’ of the four classifiers the 
results we achieve might cautiously be generalized for a much 
larger class of relation taggers in the biomedical domain.

Methods

In this section, we describe the experimental set-up of our 
work. First, we introduce the systems we used for relation 
extraction. Then, we describe the full-text resources for our 
experiments. From a methodological perspective, a general
observation can be made. The best-performing BIONLP
systems (cf. the top performers in challenge competitions such 
as BIOCREATIVE [15-17], BIONLP Shared Task [18,19], I2B2
[20,21], or DDI [22,23]) either exclusively rely on some 
(semi-)supervised form of machine learning (ML) techniques, 
or combine ML with rule- or dictionary-based approaches in 
terms of hybrid systems. The ML systems (or ML portions of 
hybrid systems) being used are thus highly dependent on their 
textual input for training, i.e., subsets of PUBMED (MEDLINE)
abstracts annotated by humans, since they constitute the gold 
standards both for training and evaluating these classifiers. 
Unsupervised ML systems are rare and, if running against 
competitor systems, are usually outperformed by supervised 
approaches in the challenges.

Relation Extractors

For our experiments, we used four systems that performed 
exceptionally well in previous BioNLP Event Extraction 
Challenges. Another criterion of choice was technical in 
nature—(the code of) the systems should be easily accessible 
and processable without much effort in our computing 
environment. The latter is important because technical 
portability of systems is an indicator for the extramural 
reproducibility of results. In the following, we briefly 
summarize each system and point out main differences among 
them and their approaches to relation extraction.  For a more 
in-depth description, we kindly refer to the respective papers 
cited in Table 1.
TEES

The TEES system [24] was successful in all three BioNLP 
Shared Tasks, achieving the first rank in 2009 and the first 
rank in half of the subtasks in 2011 and 2013, respectively.
Since the team has also provided the code as an open source 
project2 to the scientific community, it was clearly the first 
choice for our experiments.
TEES approaches the task of relation extraction in a linear 
fashion, by first detecting potential triggers in a text and, in 
                                                          
2 https://github.com/jbjorne/TEES

Table 1 - Overview of relation extraction systems used for our experiments and their ranking in the BioNLP Shared Task 2013 on 
the GENIA Task (in parentheses, results from the BioNLP Shared Task 2009, if applicable)

Name Type Ranking Group Reference
TEES ML (SVM) 2. (1.) Turku, FI [24], [25]
BIOSEM ML + rule-based 3. (n.a.) Amsterdam/Rotterdam, NL [26], [27]
HDS4NLP ML (SVM) 6./1. (n.a.) Compiègne, FR [28]
JREX ML (SVM, MAXENT) n.a. (2.) Jena, DE [14], [29]
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the next step, defining valid edge candidates between entities: 
triggers or arguments. At this point, overlapping events are 
possible—that is, they share the same trigger node. This 
‘merged event graph’ is unmerged in the next step. A Support 
Vector Machine (SVM) sequentially and independently solves 
all these steps with a linear kernel handling them as multi-
class classification problems.
BIOSEM

The BIOSEM system3 [26] stands out from the other three 
systems we consider here because of two interesting facts. 
Firstly, in the training phase, it learns rules for relation 
representations by means of a semantic and syntactic feature 
list and, secondly, it refrains from deep syntactic parsing, but 
rather builds its structured representation of the text from the 
output of a shallow parse (i.e., chunks) only. Among other 
decisions, this leads to an outstanding computational 
efficiency, paving the way to relation extraction on a larger 
scale. The authors estimate their system to be around 170–230 
times faster for completely extracting an event from a 
sentence compared to state-of-the-art ML-based systems. (see
[26] “Computational Performance”). The usage of rules also 
yields a superior precision (between 60-70% depending on the 
set-up) compared to the other systems we consider here.
HDS4NLP

In the official results for the GENIA task, HDS4NLP [28] only 
achieved rank 6 (with 43.03 F-score). However, its developers 
identified a serious bug after disclosure of the test results, and, 
after fixing it, their system reportedly achieved an F-score of 
51.15, outperforming the top ranked competitor EVEX (50.97 
F-score).4 Since they trained the model for producing the 
results for the 2013 Shared Task on all documents from both 
the development and the training sets of the BioNLP 2011 and 
2013 GE tasks, the numbers we present here differ from the 
ones they reported, as we only use 2013 GE task documents. 
However, we still achieve a much higher F-score (47.81) than 
the official figures, putting them among the top five 
performers of the challenge. Also, HDS4NLP outperforms the 
other three systems when evaluated on terms of the BioNLP 
2009 Shared Task with 54.37 F-score by at least 2.3 points.
In comparison to the other systems used for our experiments, 
HDS4NLP tackles relation extraction by training a model that 
directly extracts pairwise structured events (and the event type 
they belong to) of the form (trigger, argument) rather than 
relying on a sequential technique (i.e., extracting triggers first 
and then looking for applicable arguments). A point the 
authors make why this might be beneficial is that the usual 
approach of detecting triggers in isolation could lead to 
contextual information loss. Running an SVM (as 
implemented through PYTHON’s SCIKIT-LEARN environment)5

on the sentence level addresses the problem of classifying 
candidate-argument pairs [26]—taken from the cross product 
of the sets of possible trigger tokens and arguments—in a one-
vs.-all set-up. We will elaborate on this point in the Results 
Section.
JREX

The JREX system, developed in our lab, participated only in 
the BioNLP 2009 GE task [14] where it ranked on 2nd place 
among 24 teams. Since then it has undergone almost no 
updates. This stagnation is clearly reflected in the performance 
figures compared to the other three systems used in our 

                                                          
3 In consultation with the main developer their source code was adapted to be 
fully compatible with the UIMA framework and is available from: 
https://github.com/JULIELab/jcore-dependencies/tree/master/biosem-event-
extractor

Available from https://github.com/XiaoLiuAI/RUPEE
5 http://scikit-learn.org

experiments which are/were under active development. JREX
incorporates manually curated dictionaries and ML
methodologies (SVM, MAXENT) to sort out associated event 
triggers and arguments on trimmed dependency graph 
structures, the latter being simplified dependency structures 
from which representational ‘noise’ has been eliminated (cf. 
[14, 29]).

Text Corpora

The textual resources we exploited were taken from the text 
repository of the 2013 Event Extraction Challenge for the full 
texts and the 2011 repository for the abstracts (cf. Table 2 for 
a quantitative breakdown). For the former to get a reasonable 
amount of material, we used training and development set, 
whereas for the latter we only used the train set for training as 
to keep the size approximately on a par with that of the full 
text collection.

This set-up results in performance figures for the systems that 
differ from those reported in the 2009 Shared Task, since they 
used both development and training sets as input for training. 
Differences in the results when replicating the Shared Task 
2013 set-up (compared to the original scores) can be 
accredited to the fact that all the systems used 2011 (abstracts, 
as well) and 2013 resources for training.
Events

In order to give an idea of the quantitative scope of the text 
collections we used, in Table 3, we distinguish the Abstract 
and Full Text corpus, with counts of all

� simple unary relations which refer to all events 
constituted only of an event trigger (a sequence of tokens 
indicating an event mention) and an argument, a protein 
or gene,

� the binary Binding relation which can have two 
arguments (both a gene or a protein),

� Regulation relations, which – besides proteins or genes -
can also have other events as arguments.

Results

In this section, we present the results the four systems 
achieved for all possible combinations of training and 
evaluation data, i.e., the cross-product of the abstract (AB) and 
full text (FT) material. Hence, we:

� trained models on the Abstract corpus and evaluated 
them on Abstracts (AB on AB),

Table 2 - Overview of Text Corpora; ��� = ����� 	 
��

Items
Abstract Full Text

       train          test       train        mix       test
Documents 800 260 10 20 14
Sentences 7,449 2,447 2,438 5,165 3,204
Words 176,146 57,367 54,938 112,845 75,144
Events 8,597 3,182 2,817 6,016 3,270

Table 3 - Relation Type Counts (Test set) – The numbers for 
Full Texts do not incorporate relation counts for Protein

modification and Ubiquitination.

Relation Type Abstract Full Text
Simple Relations 1,182 993
Binding Relations 347 333
� Relations 1,529 1,326
Regulation Relations 1,653 1,944
Total 3,182 3,270
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� trained models on the Abstract corpus and evaluated 
them on Full Texts (AB on FT),

� trained models on the Full Text corpus and evaluated 
them on Abstracts (FT on AB),

� trained models on the Full Text corpus and evaluated 
them on Full Texts (FT on FT).

Table 4 shows the resulting figures in terms of Recall/
Precision/F-Score triples, whereas Table 5 depicts the deltas 
(differences) for different condition comparisons across set-
ups. When simply comparing the systems’ intra-collection 
performance (cf. columns AB on AB vs. FT on FT), we 
already see an F-Score difference (�) in favor of the abstracts, 
where TEES’ FT performance is the most robust (only 2.16 F-
score points loss compared with AB), whereas HDS4NLP
turns out to be the most fragile system (6.56 F-score points 
loss compared with AB).
This is an early indicator that relations are generally harder to 
extract from full texts than from abstracts. However, due to 
the difference in the relation count between the training 
material for Abstracts and Full Texts this conclusion is still 
preliminary and will be treated with some reservation. We will 
come back to this issue in the Discussion Section.
A noteworthy performance drop, ranging from approximately 
4.1 to 6.4 points in F-Score, can be observed consistently for 
all systems when evaluating abstract-trained models on full 
text compared to a scenario when these models were tested on 
abstracts only (cf. columns AB on AB vs. AB on FT). These 
deltas are already strong despite the fact that we could not test 
for statistical significance (see Section Discussion).
In combination, both result sets already indicate that all
systems fail to capture relation structure encodings that are 
present in the full text but not in the abstract. This view might 
be further encouraged by looking at the performance of Full 
Text models evaluated on Abstract and Full Text, respectively 
(cf. columns FT on FT vs. FT on AB). Not only do these 
results show no such clear picture (the deltas are much 
smaller), but also does the JREX system goes the other way 
round (F: +1.3).

Discussion

There are some caveats that need to be made explicitly for the 
experimental set-up we have defined:
� Text Genre Mix-up. The collection we here referred to as 

“Full Text” does include the abstracts. We could not 
change this mix-up because we, obviously, do not have 
any access to the test set. We could have done this 
separation for the training phase, but this would have led 
to the elimination of roughly about 400 relations.

� Training Set Imbalance. The textual material used for 
training the Full Text models is lower in size than that for 
training the Abstract models (approximately 6,000 vs.

8,600 events, respectively). This could be seen as a 
problem for comparability of the results. Yet, we still have 
the strong figures where Abstract models were tested on 
both AB and FT, and we did further experiments on both 
JREX and BIOSEM where these systems were 
subsequently tested with more and more training material 
for both AB and FT on both AB and FT (data not shown). 
In order to get an approximate increase of 2.5 F-Score for
AB training material (regardless of the testing material; 
AB or FT) one needs a 100 % increase of material (from 
4.300 to 8.600 events; the full train set size)

� Statistical Significance. We refrained from testing the 
statistical significance of our results. The major issue we 
faced is the data sparseness of full texts (another strong 
point for more annotated full texts): to perform said test 
under minimal requirements, we would need to split the 
full text material in such a way that either the training or
test set would hold too few events to be representative.

� Error Analysis. To provide a thorough error analysis, we 
would need to deal with 16 cases (all four systems with all 
four combinations of AB and FT for training and
evaluation). We leave this discussion for a companion 
paper.

The outlier results for the HDS4NLP scores also deserve 
several remarks: The system
� achieves the highest F-Scores when trained and evaluated 

on abstracts—54.37; see Table 4 (AB on AB),
� yet has the lowest difference when these AB models are 

evaluated on full texts instead (��=–4.07); see Table 5, 
column 2,

� drops the highest (��= –8.59) when FT-trained instead of 
AB-trained models are used for evaluation on the AB test 
sets; see Table 5, column 3

� and further drops the highest when comparing AB-AB vs. 
FT-FT (�= –6.56); see Table 5, column 1.

We tend to explain this special role of the HDS4NLP system 
as a result of taking an entirely different methodological 
approach than the other three systems—HDS4NLP directly 
extracts pairwise structured events (and the event type they 
belong to) of the form (trigger, argument) instead of using a 
linear technique (i.e., extracting triggers first and then looking 
for applicable arguments). From the three competitive 
systems, HDS4NLP performs the worst in a solely FT on FT
set-up so that these preliminary analyses could lead to the 
cautious conclusion that the HDS4NLP system is best (and 
better) suited to utilize abstracts as training material.
The exceptions coming from the JREX system (see its 
inconsistent increase in performance when Full Text models 
are evaluated on Abstract data, Table 5, column 4) are 
completely overshadowed by a substantial performance 
penalty in comparison with all other systems. This is clearly 
an effect of lacking maintenance over the past five years.

Table - Deltas in Recall/Precision/F-Score triples for comparison between different columns of Table 4
AB on AB FT on FT

Name FT on FT AB on FT FT on AB FT on AB AB on FT
TEES (–3.50/ +0.56/ –2.16) (–7.20/–6.10/–6.39) (–6.48/–5.17/–6.22) (–2.98/–5.72/–4.06) (–3.70/–6.66/–4.23)
BIOSEM (–2.98/–2.52/–3.07) (–4.28/–7.12/–5.35) (–4.27/+1.19/–3.24) (–1.29/ +3.71/–0.17) (–1.30/–4.60/–2.28)
HDS4NLP (–3.48/–11.71/–6.56) (–2.55/–6.68/–4.07) (–6.79/–11.44/–8.59) (–3.31/ +0.27/–2.03) (+0.93/+5.03/ +2.49)
JREX (–2.06/–3.94/–2.82) (–2.55/–7.17/–4.40) (-2.60/+0.54/–1.54) (–0.54/ +4.48/ +1.28) (–0.49/–3.23/–1.58)

Table 4 - Results for all conditions in Recall/Precision/F-Score triples; bold values mark the best value for the respective set-up
Name AB on AB AB on FT FT on FT FT on AB
TEES (46.67/56.74/51.40) (39.47/50.64/45.01) (43.17/57.30/49.24) (40.19/51.57/45.18)
BIOSEM (41.39/70.17/52.07) (37.11/63.05/46.72) (38.41/67.65/49.00) (37.12/71.36/48.83)
HDS4NLP (46.32/65.80/54.37) (43.77/59.12/50.30) (42.84/54.09/47.81) (39.53/54.36/45.78)
JREX (39.75/51.97/45.05) (37.20/44.80/40.65) (37.69/48.03/42.23) (37.15/52.51/43.51)
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Conclusions

We focused in this paper on the implications of running 
established tooling and pipelines, developed on scientific 
abstracts as training data, on scholarly full text data from the 
life sciences. Our experiments reveal that F-score losses up 
until 6.6 F-Score points have to be anticipated. Abstracting 
away from the specific system particularities, there is a 
consistent trend for performance degradation when abstract-
trained models are transferred without changes to full texts.
The apparent solution—providing annotated full-text 
corpora—is costly and resource-intensive. Currently, only one 
corpus (ID) provides relation encodings for full texts, whereas 
another one contains only highly specific named entity 
encodings (CRAFT). Given the resource-density in the life 
sciences field, distant supervision (via database contents) 
might be a reasonable alternative [30], while moving to 
unsupervised relation extraction is likely to be accompanied 
with an additional penalty in terms of sliding F-scores. Hence, 
approaches decomposing full texts into more digestible text 
portions (section and paragraph segmentation at the macro-
level of text analysis; sentence simplification at the micro 
level) might be worthwhile to be taken into account.
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