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Abstract 

Dividing patients into similar groups plays a significant role in 

implementing personalized care. Clinicians and researchers 

have been applying patient grouping techniques in disease 

phenotyping, risk stratification, and personalized medicine. 

However, the current approaches are either based on pure 

domain knowledge where the underlying patient similarity 

cannot be precisely quantified, or based on unsupervised 

clustering techniques which completely ignore the clinical 

context of measuring patient similarity. In the study, we 

propose an outcome-driven approach to identify clinically 

similar patients which are grouped together as a precision 

cohort.  The approach quantitatively measures the similarity 

between patients in terms of a particular clinical outcome of 

interest, thus patients who have a similar clinical outcome tend 

to be grouped into the same group. We demonstrate the 

effectiveness of the approach in a real-world case study: from 

an atrial fibrillation patient cohort that is usually considered to 

be at high risk for ischemic stroke (IS), according to current 

clinical guidelines. Our approach successfully identified a 

precision cohort of patients with truly low risk of IS. 
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Introduction 

In order to understand complex disease conditions and to 

provide personalized care, it is crucial for clinicians to divide 

patients into subgroups such that patients in one group are 

similar to each other. Successful patient grouping is particularly 

beneficial for the tasks of disease phenotyping, risk 

stratification and personalized medicine. In current clinical 

research and/or practice, patient grouping is generally 

conducted based on some scoring schemes recommended by 

clinical guidelines, which stratify patients into groups with 

different levels of risk. The patients with the same level of risk 

are considered to be similar. This mechanism may lead to some 

problems: 1) a general clinical guideline may not fit for the local 

clinical practice or population; 2) the similarity between 

patients with the same risk level are not quantified because the 

scoring schema is generated for a population and the detailed 

patient conditions are not differentiated in the same level.  

In recent years, unsupervised clustering has been applied to 

identify groups of patients with different phenotypes and 

implement personalized medicine [1;2] in clinical research. 

Although the method can be adapted to local clinical practice 

and quantify the similarity between patients using distances 

between vectors of patient features, it ignores the fact that 

patient similarities are usually context-based, i.e., the similarity 

degree between two patients’ conditions may vary in terms of 

particular clinical outcomes of interest. For example, for three 

patients A, B and C with atrial fibrillation (AF), clinicians 

would regard that A and B are more similar in terms of stroke-

occurrence risk, and A and C are more similar to each other 

when considering myocardial infarction (MI) risk. This is 

because the impacts of risk factors on these two outcomes are 

totally different (e.g., smoking and body mass index play 

important roles in the risk of MI while their impacts on stroke 

are relatively smaller).  

This study aims to demonstrate how an outcome-driven 

similarity analytics method can be utilized to address the issues 

above. With the given clinical outcome of interest, the key idea 

is to cluster patients into groups based on a learned similarity 

(distance) metric from patients’ clinical records where patients 

with the same clinical outcome are considered to be similar.  

One related work [3] has been reported using a learned distance 

metric to retrieve the K most similar patients and providing the 

prognosis insight based on the physiological time-series data of 

similar patients. Another work [4] is to learn the similarity 

metric from physicians’ feedbacks and use patient similarity for 

decision support.  Our work differs from them in using the 

learned distance metric to divide the patients into groups, 

followed by identifying the characteristics of similar patients in 

each group. To further understand the resultant groups, we also 

discover the discriminating rules between groups.  The 

discovered rules can guide clinicians to easily assign new 

patients into their similar patient group, and we call such a 

patient group a precision cohort.  Personalized care can then be 

recommended to the patients based on the insights discovered 

from this precision cohort. An alternative approach to divide 

patients into subgroups without similarity metric learning and 

clustering is to directly build a decision tree to split the patients 

against the outcome [5]. However, it suffers from two 

limitations: 1) similar patients could be dispersed in different 

branches, thereby requiring manual regrouping after the tree is 

built; 2) there is no distance metric for measuring the exact 

similarity between two patients.  

We validate our approach in a real-world case study where we 

stratify a population of AF patients with high risk of ischemic 

stroke (IS) into a few groups and identify a particular group of 

patients with truly low risk. With the demonstrated 

effectiveness, we believe that other diseases and scenarios of 

finding precision cohorts could generally benefit from the 

proposed approach. 
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Methods 

As precise patient similarity is context-dependent, and varies 

along the patient conditions, outcomes of interest, and 

particular clinical scenarios, we first define patient similarity 

context as follows. A patient similarity context consists of:  

• A target patient population of study, e.g., the patients 

with diagnosis of diabetes type 2 but without any 

other complications, 

• A clinical outcome of interest, e.g., mortality in two 

years, re-hospitalization in six months, and so on. The 

assumption is that two patients with the same outcome 

are considered to be similar, and 

• A clinical scenario when the similarity analytics need 

to be done, e.g., when patients are first diagnosed with 

type 2 diabetes, when patients are hospitalized, or 

when patients are registered into a particular study. 

Figure 1 illustrates the overall methodology of how we find 

precision cohorts by outcome-driven patient similarity 

analytics. With a given clinical data set and a patient similarity 

context, we adopt a machine learning approach. First, we 

determine the set of features used to compute the similarity 

between patients, and determine the exact similarity   metric 

based on the selected features where the outcome of each 

patient is considered. Then, we segment the patients into groups 

based on their similarities and characterize the groups with their 

unique characteristics.  Downstream analytics can be performed 

on each group to discover insights for personalized care, e.g. 

local risk analysis and treatment efficacy analysis, which are 

beyond the focus of this paper.  We describe the pipeline 

analytics in detail as follows. 

Patient Similarity Determination 

 

Patient Data Context Alignment  

Given a clinical data set and a patient similarity context, we 

prepare the patient data as illustrated in Figure 2.  For each 

patient, we identify an index date as the time when a clinical 

scenario is setting, e.g. when the diagnosis of type 2 diabetes is 

initially made, and use the records before the index date 

(observation window) to conduct the similarity analysis (those 

records after the index date and before the outcome date are 

ignored). The patient is then represented with a vector of 

features summarized from these clinical records.  These 

features could incorporate the patient’s information involving 

demographics, diagnosis, lab test, medication, and so on.  In 

addition, we label the patient as positive or negative in terms of 

the outcome of interest (we now focus on the binary outcome 

only). 

Similarity Feature Determination  

Not all features are relevant to determine contextual patient 

similarities, and there are two typical ways to filter the relevant 

features from the candidates obtained from the previous step: 

1) based on established domain knowledge (e.g. clinical 

guidelines), we identify the set of relevant features known as 

risk factors regarding the specific outcome; 2) we apply 

supervised feature selection methods [6] to automatically select 

the features relevant to the outcome. The analysis scenario 

determines which method to apply.  

Similarity Metric Determination  

Since the distance metric can be regarded as a measure of 

dissimilarity, similarity learning is closely related to metric 

learning.  A few alternatives exist to measure the clinically 

similarity between two patients represented by vectors of the 

selected similarity features: 

• Using the Euclidean distance between them or 

between their corresponding vectors with reduced 

dimensions by PCA (Principal Component Analysis) 

if there are too many similarity features. 

• Using the distance between their predicted risk scores 

regarding the outcome of interest where we first 

develop a risk prediction model based on the selected 

features, and then applying the model to compute the 

risk score for each patient regarding the outcome. 

Patients with similar risk scores are considered 

similar. 

• Using a learned Mahalanobis distance between them, 

which can automatically adjust the importance of each 

feature against the given outcome of interest.  

Formally, we represent a patient as a N-dimensional 

feature vector x where N is the number of identified 

relevant features. Let S be the set of equivalence 

constraints denoted by S = {(xi, xj)| xi, xj belong to the 

same outcome class} and D be the set of 

inequivalence constraints denoted by D = {(xi, xj)| xi, 

xj belong to the different outcome classes}. Our goal 

is to learn a generalized Mahalanobis distance 

between patient xi and patient xj defined as:                             
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As a result of metric learning, we expect to keep 

pairwise vectors in S close and those in D separated 

away.   

While a few algorithms [7] have been proposed to learn a 

Mahalanobis distance metric, in this study we have 

implemented three popular ones including linear discriminant 

analysis (LDA) [8], which projects the original feature vectors 

into a subspace that preserves the variance between class labels; 

large margin nearest neighbor (LMNN) [9], which learns a 

linear transformation of the input space where k nearest 

neighbor should have matching labels;  and information-
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theoretic metric learning (ITML)  [10], which maximizes the 

differential entropy of a multivariate Gaussian subject to 

constraints on the associated Mahalanobis distance.   

To determine which metric to use for computing patient 

similarities, we evaluate them using a nearest-neighbor based 

method. That is, for a specific metric, we compute the 

classification performance against the given target outcome 

using a KNN (K Nearest Neighbor) classifier that is built upon 

the metric. We consider a metric a better fit if it achieves the 

best classification performance. 

Precision Cohort Finding  

Patient Clustering  

We apply agglomerative hierarchical clustering to group 

patients so that the patients within a group are contextually 

similar. The method starts with singleton clusters and proceeds 

by successively merging the two “closest” clusters at each 

stage.  We customize the method by using the previously 

determined distance metric to determine the distances between 

clusters rather than using the conventional unsupervised 

distance metrics. With the learned distance metric, we expect 

that there could be a substantial divergence in the result of the 

targeted outcome (proportion of patients with a positive 

outcome) between the resultant groups.  

One advantage of hierarchical clustering is the flexibility of 

determining the number of produced clusters based on the 

results of one running.  For our purpose, we determine the 

number of reported clusters and evaluate the clustering 

performance by: 1) an internal clustering performance metric: 

the silhouette coefficient SH [11] which is defined as  SH =

(b − a)/max	(a, b)  where a is the mean distance between a 

patient and all other patients in the same group, and b is the 

mean distance between a patient and all other patients in the 

next nearest group. A SH near 1 indicates that the sample is far 

away from the neighboring clusters, and a SH greater than 0.2 

is generally considered to be a fair clustering result; 2) An 

external metric to measure the group outcome disparity (OD) 

between the resultant groups which is defined as the difference 

between the maximal and minimal positive outcome rates of the 

groups.  This metric reflects the effect of stratified risks among 

the groups, and the grouping result with higher OD is better for 

our purposes.  

Patient Group Characterization  

After obtaining the patient groups with stratified outcome 

results, our interest is to identify the characteristics of each 

group and understand the differences between groups. We 

address this by two means: 1) we compare the key feature 

differences between groups using statistical tests (a Kruskal-

Wallis test for continuous features and Pearson chi-square test 

for categorical features.); 2) in order to identify the unique 

characteristics of groups, we build a decision tree that can 

differentiate the resultant M clusters where M classes of 

patients are labeled in accordance with their respective cluster 

memberships.  For easier applicability, we further derive the 

explicit rules from the tree to interpret the group membership 

of a patient. In this work, we use C5.0 [12] to build a decision 

tree and convert it to rules. 

Results-Risk Stratification of AF Patients 

The CHA2DS2-VASc (CV) [13] score ranging from 0 to 9 has 

been widely recommended and used to identify AF patients 

with a high risk of IS (CV≥2) who need to be treated with oral 

anticoagulant (e.g. Warfarin) or radiofrequency ablation 

(RFA). However, it is still arguable that the CV score may not 

precisely capture the risk of particular AF patients from local 

populations. For example, there is a subgroup of patients with 

high CV but a low IS-occurrence rate for whom anticoagulation 

may not be indicated. This is crucial because anticoagulants 

may have severe side effects, such as warfarin-related bleeding, 

and RFA incurs additional economic burden on patients. It 

therefore might be unnecessary to treat those patients with truly 

low risk. Thus, this study aims to apply our proposed approach 

to identify such AF patient subgroups, who have truly low risk 

but are misclassified as high-risk by high CV score.   

Data Set  

We use a data set from a cohort study for around 18,000 AF 

patients across China [14]. The collected data includes patients’ 

structured baseline records (i.e. demographics, history, 

medication history) and clinical records (i.e. interventions, 

outcomes) during follow-up visits in a 3-year period. We are 

interested in studying the risk of IS during one year of follow-

up by using the baseline features of patients, and also a selected 

population of 2,907 patients from the population (with an IS-

occurrence rate is 4.6%) with the criteria as follows: 1) 

complete 12-month follow-up records are available for the 

patient, or follow-up records until the occurrence of an IS event 

within the 12-month follow-up period; 2) the patient either has 

no intervention (warfarin or RFA) until the end of 12 months  

of follow-up, or IS occurred before the intervention was started; 

3) the patient’s CV was ≥2 (i.e. the patient is considered high-

risk).  As the raw data has non-standard, missing and dirty 

values, we apply the same approach as our previous study [14] 

to automatically clean the data and impute the missing values.  

In the end, we have a data set with 132 input features and a 

binary feature for the outcome of having IS occurrence in 12 

months of follow-up.   

Furthermore, to validate the study results of analytics, we split 

the data into a derivation patient set (1,743 patients) and a 

validation patient set (1,164 patients) (60% and 40% of the 

population, respectively). The splitting strategy is to keep both 

the IS-occurrence rates and the CV score distributions the same 

between the two sets. We observe that the lowest IS-occurrence 

rate for the patients with CV=2 is approximately 2.5%, thus our 

objective is to discover a subgroup of patient with truly low risk 

of IS where the IS-occurrence rate should be lower than 2.5%. 

Selecting Similarity Features   

From the original data set with 132 input features, we first 

remove those that are relevant to IS occurrence but have strong 

correlation with known risk factors as defined by the CV score.  

We then automatically select the other relevant features using a 

filter-based method (SPSS modeler version 17). In other words, 

we select the top significant continuous features based on the p-

value of using the F statistic and categorical features based on 

the p-value of using Pearson’s χ2 statistic (p <= 0.05).  Besides 

the four known CV features including prior CHF, prior IS, prior 

vascular diseases, and age, Table 1 lists the other 10 features 

selected as potential risk factors. 

 

 

 

Table 1 – Similarity features selected from the data 

Whether having a history of established coronary artery 

disease  (ECAD)

Whether using drugs for ventricular rate control at the 

baseline (VRCD)

Whether there is a IS within the recent 5 years (IS5)

Whether there is a CHF within the recent 5 years (CHF5)

Whether there is a DM within the recent 10 years (DM10)

Whether statin were used to treat hyperlipidemia  (Statin)

Total bilirubin at the baseline (TBIL) 

Whether ACEI was used at the baseline (ACEI)
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Left ventricular septum thickness on echocardiography at the 

baseline (IVS) 

Left ventricular posterior wall thickness on echocardiography 

at the baseline (LVPW) 

 

Determining the Similarity Metric 

With the derivation data set where each patient is represented 

by 14 features above, we develop a few distance metrics to 

measure patient similarity (using scikit-learn 0.17): 1) EUCL. 

The Euclidean distance between the patient vectors; 2) 

LR_Score.  The distance between the predicted risk scores 

using a logistic regression (LR) model trained on the derivation 

set (AUC of the derived LR is 0.72). 3) LDA. The learned 

Mahalanobis distance using LDA.  4) LMNN. The learned 

Mahalanobis distance using LMNN 5) ITML. The learned 

Mahalanobis distance using ITML. Table 2 reported their KNN 

classification performance on the validation set with the 

averaged results when KNN classifiers were trained on the 

derivation set with K set to 1, 3, 5, 7, and 9 respectively.  While 

the overall F1 score is low for all metrics (this is due to our 

highly imbalance data set), LDA outperforms the other metrics.  

Table 2 – KNN classification performance of different metrics. 

 EUCL LR_Score LDA LMNN ITML

Average Precision  0.481 0.262 0.594 0.483 0.410

Average Recall  0.124 0.131 0.153 0.122 0.112

Average F1 0.132 0.151 0.194 0.132 0.134

 

Patient Grouping Results  

Table 3 – Clustering results using different similarity metrics 

 2 clusters 3 clusters 

 IS_occurrenc

e rate 

SH OD IS_occurrence 

rate 

SH OD

EUCL 3.8%,  6.6% 0.20 2.8% 3.8%, 5.3%, 

9.4% 

0.22 5.6%

LR_Sco

re 

3.4%, 13.8% 0.56 10.4% 1.6%, 4.6%, 

13.8% 

0.48 12.2

%

LDA 2.9%, 10.2% 0.58 7.3% 1.5%,4.1%, 

10.2% 

0.52 8.7%

LMNN 0%,  4.7% 0.65 4.7% 0%, 4.1%,  

10.6% 

0.24 10.6

%

ITML 4.5%, 5.4% 0.32 0.9% 0% ,4.5%, 6% 0.30 6%

 

With all the considerations above, we decide to adopt the three 

clusters resultant from the clustering with LDA for downstream 

analysis.  As summarized in Table 4, on the one hand, there is 

a stratified risk of IS among groups where group 1, 2 and 3 

corresponds to low, medium, and high risk groups respectively.  

Particularly the lowest risk rate is 1.5% in group 1 which is even 

close to the patients with CV=1 (1.4% in our source data set). 

This implies a group of patients with truly low risk of IS. On 

the other hand, the IS-occurrence rates increase with the rising 

of the CV median values of groups. This to some extent verifies 

the rough validity of CHA2DS2-VASc in this local population. 

Table 4 – Summary of the resultant patient groups  

 Derivation Set Validation Set 

Group 1 2 3 1 2 3 

Propotion 34.7% 41.1% 24.2% 33.0% 49.4% 17.6%

IS- Rate  1.5% 4.1% 10.2% 1.6% 4.8% 9.3% 

CV (Median) 3 4 6 3 4 6

Moreover, we validate the resultant clustering model against 

the validation set where each patient is assigned to one of three 

clusters based on his similarity with the center of each cluster.  

In this way, the patients are also divided into three groups as 

shown in Table 4.   We observe that it approximately coincides 

with the result from the derivation set, and in particular, a 

precision cohort with truly low risk of IS at 1.6% is successfully 

identified too.  Likewise, we also test the clustering model with 

LR_Score against the validation set because clustering with 

LR_score achieves a comparable result with using LDA on the 

derivation set.  However, it fails to get a satisfactory result on 

the validation set where among the resultant three clusters, the 

lowest risk rate is 3.4% and there is an extreme small group 

with only 61 patients. 

Group Characterization Results  

Table 5 summarizes the key baseline characteristics that are 

significantly different among the groups from the derivation set  

where a p value <= 0.05 is considered statistically significant 

using Pearson chi-square test. Group 1 patients are the youngest 

and tend to have the lowest rates of comorbidities while group 

3 patients are the oldest and have the highest rates of all 

comorbidities. The conditions of group 2 patients are in 

between group 1 and group 3 in terms of either comorbidities 

or medication taken or examination results.  These group 

differences coincide with their varied IS-occurrence rates. 

Table 5 – Baseline characteristics of the resultant groups 

Group (patient count) 1 (605) 2 (716) 3 (422) P value

Age (median) 71 74 77 <0.001

CHF 12% 34% 65% <0.001

Prior IS 3% 16% 56% <0.001

Vascular diseases 17% 22% 42% <0.001

ECAD 10% 17% 32% <0.001

CHF5 0% 9% 39% <0.001

IS5 0% 4% 34% <0.001

DM10 16% 8% 6% <0.001

IVS (median) 9.7 9.8 10 <0.001

LVPW (median) 9.4 9.4 10 <0.001

VRCD 46% 80% 85% <0.001

Statin 9% 25% 43% <0.001

 

To further interpret the group characteristics, we build a deci-

sion tree using C5.0 (with a classification accuracy of 77% us-

ing SPSS modeler version 17) to classify these patients accord-

ing to their cluster membership and derive a few rules to explic-

itly differentiate them.  The resultant rules capture the unique 

characteristics of patients in different groups, and are easier to 

understand.  In particular, we are the most interested in the pa-

tients in group 1 because they have the lowest IS-occurrence 

rate, and Table 6 lists the resultant 5 rules to characterize group 

1 with high confidences (all are all above 85%).    Due to the 

space limitation, we do not list the other grouping rules. 

Table 6 - Rules to characterize the group 1 patients. 

No Rules Confidence

1 Statin not used, no CHF in recent 5 years, no 

prior IS, and LVPW <=7.9mm 

90.8% 

2 Statin not used, no CHF in recent 5 years, no 

prior IS, age<75,  and  8<=LVPW<=8.9mm

87.7% 

3 VRCD not used, no CHF in recent 5 years, 

no prior IS, and age<75 

87.3% 

4 Statin not used, no prior CHF, no prior IS, 

and age<65

86.4% 

5 VRCD not used, no prior CHF, no prior IS 85.5%
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Table 7 - Validation result from the decision tree. 

Group 1 2 3 

Size (Percentage) 34.1% 41.2% 24.7% 

IS-Occurrence Rate  2.4% 4.9% 6.6%

CV Score (Median) 3 4 6 

 

We validate the developed decision tree by applying it to  the 

validation set. As show in Table 7, the resultant three groups 

have the same CV median values with those from the 

clustering.  To our interest, group 1 patients still have a low rate 

of IS-occurrence at 2.4% which is even lower than the patients 

with CV=2 (2.5% in our source data set).  The results above 

support validity and stability of our approach.  

Discussion 

One issue for further investigation is if the group 1 patients that 

we identified with truly low risk are simply a subset of patient 

with the lowest CV score.  To answer that, we compared the 

breakdown of CV distribution of group 1 patients between the 

clustering results on the derivation and validation sets, and the 

result shows that more than 50% of patients are actually have a 

CV>2 in both sets.  This implies that CHA2DS2-VASc may not 

precisely fit this local population.  In fact, prior hypertension 

and sex are not selected as our similarity features. This suggests 

a further systematic study on risk factor evaluation which 

should include all CHA2DS2-VASc factors and the novel 

feature candidates as in Table 1.  

The critical part of our proposed methodology lies in 

determining an appropriate similarity metric for a specific 

context. While the outcome-driven learned metrics (including 

LR_Score and Mahalanobis distance metrics) generally 

outperform the unsupervised EUCL, it is still challenging to 

identify the most appropriate one from various outcome-driven 

metrics. The performance of these metrics may vary depending 

on the different data sets or different clinical scenarios. 

Furthemore, in order to cope with a large and sparse data set, 

we could adopt deep phenotyping [15] (which is not the focus 

of this study) to learn a set of latent features to compute patient 

similarity rather than use the seleclted raw features.    

Conclusions 

In this study, we developed an outcome-driven approach to 

identify groups of similar patients in terms of a particular 

clinical outcome. We validated the effectiveness of the 

approach by grouping AF patients with high risk of IS into three 

subgroups using a real-world data set and then identifying a 

precise group of patients with low risk of IS and their unique 

characteristics. This may help to better inform IS risk 

stratification in  clinical guidelines.  Further research would be 

necessary to verify the utility of novel risk factors identified.  

Subdividing high-risk patient groups may better target 

personalized care recommendations and improve patient 

outcomes.  For example, a clinician could prescribe a treatment 

to a patient based on a treatment effectiveness analysis and 

comparison of the patient’s characteristics against those of a 

precision cohort which includes similar patients. Our future 

work includes adopting two-stage clustering to handle a very 

large data set and incorporating temporal similarity features and 

other outcomes of interest. 

References 

[1]  S. Ather, L.E. Peterson, V.G. Divakaran,.et al. Digoxin treatment in heart 

failure--unveiling risk by cluster analysis of DIG data. Int J Cardiol. 2011 

Aug 4;150(3):264-9. 

[2]  Ahmad T, Pencina MJ, Schulte PJ,.et al. Clinical implications of chronic 

heart failure phenotypes defined by cluster analysis. J Am Coll Cardiol. 

2014 Oct 28;64(17):1765-74. 

[3]  Ebadollahi S, Sun J, Gotz D, Hu J, Sow D, Neti C. Predicting Patient’s 

Trajectory of Physiological Data using Temporal Trends in Similar Pa-

tients: A System for Near-Term Prognostics AMIA Annual Symposium 

Proceedings. 2010;2010:192-196. 

[4]  Sun J, Wang F, Hu J, Ebadollahi S. Supervised Patient Similarity Meas-

ure of Heterogeneous Patient Records. ACM SIGKDD Explorations 

Newsletter, 2012:14(1). 

[5]  G.C. Fonarow, K.F. Adams, W.T. Abraham, C.W. Yancy, W.J. Boscar-

din. Risk Stratification for In-Hospital Mortality in Acutely Decompen-

sated Heart Failure: classification and regression tree analysis. JAMA, Feb 

2005, 293 (5). 

[6] Guyon I, Elisseeff A. An Introduction to Variable and Feature Selection. 

Journal of Machine Learning Research 2003:3:1157-1182. 

[7]  Kulis B. Metric Learning: A Survey. Foundation Trends in Machine 

Learning 2012:5 287-364. 

[8] Hastie T., Tibshirani R. Discriminant adaptive nearest neighbor classifica-

tion. IEEE Pattern Analysis and Machine Intelligence, 1996:18(6):607-16 

[9]  Weinberger KQ, Saul LK.  Distance Metric Learning for Large Margin 

Nearest Neighbor Classification. Journal of Machine Learning Research 

10 (2009) 207-244 

[10]  Davis JV, Kulis B, Jain P, Sra S, Dhillon IS. Information-Theoretic Met-

ric Learning. Proceedings of the 24th International Conference on Ma-

chine Learning, 2007. 

[11]  Rousseeuw PJ. Silhouettes: a Graphical Aid to the Interpretation and Val-

idation of Cluster Analysis. Computational and Applied Mathematics, 

1987 20: 53–65. 

[12]  Kuhn M, Johnson K. Applied Predictive Modeling, 2013 

[13]  Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical 

risk stratification for predicting stroke and thromboembolism in atrial fi-

brillation using a novel risk factor-based approach: the euro heart survey 

on atrial fibrillation. Chest. 137 (2): 263–72. 

[14]  Li X, Liu H, Du X, .et al. Integrated Machine Learning Approaches for 

Predicting Ischemic Stroke and Thromboembolism in Atrial Fibrillation. 

AMIA Annual Symposium Proceedings. 2016. 

[15]  Pivovarov R, Perotte AJ, Grave E, Angiolillo J, Wiggins CH5, Elhadad 

N. Learning probabilistic phenotypes from heterogeneous EHR data. J Bi-

omed Inform. 2015 Dec;58:156-65. 

 

Address for correspondence 

Haifeng Liu.  Email: liuhf@cn.ibm.com. 

H. Liu et al. / Precision Cohort Finding with Outcome-Driven Similarity Analytics 495


