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Abstract

Acute myocardial infarction is a major cause of hospitalization 
and mortality in China, where ST-elevation myocardial 
infarction (STEMI) is more severe and has a higher mortality 
rate. Accurate and interpretable prediction of in-hospital
mortality is critical for STEMI patient clinical decision making. 
In this study, we used interpretable machine learning 
approaches to build in-hospital mortality prediction models for 
STEMI patients from Chinese Acute Myocardial Infarction 
(CAMI) registry data. We first performed cohort construction 
and feature engineering on CAMI data to generate an available 
dataset and identify potential predictors. Then several 
supervised learning methods with good interpretability, 
including generalized linear models, decision tree models, and
Bayes models, were applied to build prediction models. The 
experimental results show that our models achieve higher 
prediction performance (AUC = 0.80~0.85) than the previous 
in-hospital mortality prediction STEMI models and are also 
easily interpretable for clinical decision support.
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Introduction

Acute myocardial infarction (AMI) is a major cause of 
hospitalization and mortality in China, where the in-hospital 
mortality rate for ST-elevation myocardial infarction (STEMI) 
is even higher than that for non-ST-elevation myocardial 
infarction (NSTEMI) [1,2]. Because there is considerable 
variability in mortality risk among patients with STEMI, it is 
critical to accurately predict the risks of in-hospital mortality 
for STEMI patients at the time of hospital presentation, in order 
to decide on the allocation of clinical resources and the choice 
of interventional and medical therapies [3,4]. 
Current in-hospital mortality risk models for STEMI, such as 
TIMI score [3] and GRACE score [4], use predictors that are 
ground in previous known evidence, including age, heart rate, 
systolic blood pressure (SBP), Killip levels, weight, history of
hypertension, diabetes and angina, anterior STEMI, time to 
treatment, serum creatinine, and cardiac arrest. These risk 
scores were derived from logistic regression models, which are 
well understood and easy to apply in clinical practice. However, 
the performance of in-hospital mortality prediction for STEMI 
still has room for improvement. Besides the predictors used in 
the existing models, there are other potential predictors that are 
highly related to STEMI in-hospital mortality, which can also 
be used in risk prediction to improve the performance. Besides, 
some other machine learning models may achieve better 
prediction performance or interpretability than regression 
analysis models like logistic regression. 

Therefore, this study investigated the modeling of in-hospital 
mortality prediction models in STEMI that have good
prediction ability and interpretability using machine learning 
methods. The study was based on the Chinese Acute 
Myocardial Infarction (CAMI) [2] data, which collected the 
patients’ demographics, symptoms, medical history, results of 
physical examination and laboratory test, details of in-hospital 
treatments, and clinical events including mortality. Because the 
dataset is heterogeneous and redundant, dimensionality 
reduction methods and model learning algorithms that can 
handle redundant feature sets should be used for predictive 
modeling. Moreover, the objective of this study was to build 
human understandable and applicable risk prediction models. 
Though many previous works used feature engineering and 
supervised learning methods to build high accuracy risk 
prediction models for cardiovascular diseases and diabetes [5-
10], the learning methods in which resulting models are 
difficult to interpret (e.g., principle component analysis, 
support vector machine, and deep neural network) are not 
preferable in building clinically interpretable risk models.
In this study, we integrated interpretable machine learning 
approaches to build in-hospital mortality risk prediction models 
for STEMI patients from CAMI data. Feature engineering
methods, including feature construction, missing data 
imputation and filter-based feature selection, were used to 
generate available dataset, identify potential predictors and 
reduce redundancy. Then we applied different categories of 
supervised learning methods that have good interpretability, 
including generalized linear models, decision trees, and Bayes 
models, to build risk prediction models that are suitable for 
different clinical scenarios. The experimental results show that 
our models can achieve higher prediction performance than the 
previous risk prediction models for STEMI, and are also easily 
interpretable for clinical decision support.

Figure 1 – Pipeline of building in-hospital mortality risk 
prediction models for STEMI patients
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Methods

Figure 1 shows our pipeline of building in-hospital mortality 
risk prediction models for STEMI patients. We first constructed 
the cohort of interest, and applied feature engineering to
identify potential predictors. Then we trained prediction models 
using supervised learning algorithms, and evaluated their 
prediction performance and model interpretability. 

Cohort Construction

The dataset used in this study were collected in the CAMI 
registry project [2]. The project started in 2013 and 26,103 
patients with AMI were registered until 2014. From the CAMI 
data, we identified 18,744 patients who were hospitalized due 
to STEMI in 2013 and 2014, where 1,263 patients were cases 
who died in hospital (the in-hospital mortality rate is 6.74%), 
and the others were control instances who survived in hospital. 
The features used in this study were those collected at the time 
of hospital presentation (i.e., before any in-hospital treatment). 
In the CAMI data, 132 originial features meet this criteria, 
including demographics, medical and treatment histories, life 
styles, onset symptoms, initial in-hospital vital signs, laboratory 
test results, etc. 
In this study, we used the data of patients hospitalized in 2014 
as the training set (9,619 patients, whose mortality rate is 
6.78%) to develop the risk prediction models and the data of 
patients hospitalized in 2013 as the testing set  (9,125 patients, 
whose mortality rate is 6.70%) to valid the prediction 
performance of the models.

Feature Engineering

In the raw CAMI data, some original features are not 
appropriate to be directly used in predictive modeling (e.g., 
birth year), and a large proportion of original features (more 
than 95%) have missing values. Moreover, not all original 
features are highly related to in-hospital mortality of STEMI. 
Therefore, we performed feature engineering to construct and 
select the potential predictors for risk prediction. We first 
transformed the original features to features that are easy to 
analyze by feature construction. For example, the “birth year” 
of each patient was transformed to “age”. Then, we employed
data imputation to fill-in missing values and applied filter-based 
feature selection algorithms to identify potential predictors 
from the imputed features.
The raw CAMI data has significant omissions due to the 
questionnaire structure; unknown values or errors in data 
collection. Therefore, we performed missing data imputation 
before predictive analysis. Firstly, the features with too many 
missing entries (more than 20%) were discarded, because their 
distributions are difficult to estimate. For the remaining 
features, every missing value of a numeric feature (e.g., SBP) 
was replaced with the mean of the feature’s observed values, 
every missing value of an ordinal feature (e.g., Killip level) was 
replaced with the median of its observed values, and every 
missing value of an unordered nominal feature (e.g., history of 
diabetes) was replaced with the mode of its observed values. In 
this study, after feature construction and missing data 
imputation, 93 available candidate features were produced to 
the following feature selection step.
In machine learning, feature selection methods automatically 
test and select predictive features from a large number of 
candidate features. There are three main supervised feature 
selection strategies: filter, wrapper, and embedded models [11]. 
The filter models separate feature selection from model
learning, and the wrapper and embedded models integrate
feature selection in learning process. In the step of feature 
engineering, we performed filter models to remove the features

that do not provide useful information and select the features 
that have high relevancy against the outcome. Concretely, the 
close-to-constant features, in which 99% of the instances have 
identical values, were first removed. Then we employed and 
compared two feature filtering models.
� Univariate filter. A univariate filter method calculates a 

score to represent the relevancy of a feature against the 
outcome, and filter the feature based on the score
independently. In this study, we used the p-value from two 
standard statistical tests, the Chi-square test for categorical 
features and the ANOVA F test for numeric features, as the 
relevancy scores and selected the features whose p-value < 
0.05.

� Multivariate filter. Different from the univariate filter 
method, a multivariate filter method evaluates the input 
features as a batch producing a subset of features that have 
the highest overall score. In this study, we used the 
correlation-based feature subset selection (CFS) method 
[12] to obtain the subset of features highly correlated with 
the outcome while having low intercorrelation between the 
features.

In this study, we also combined the features that were 
automatically selected by the filter-based feature selection 
algorithm with features that are well-known risk factors from 
prior knowledge [3,4], but were not automatically selected 
(e.g.,  anterior STEMI, time to treatment) as the predictors to 
build risk prediction models. 

Predictive Modeling

In this study, we applied and compared different categories of 
machine learning models that have good interpretability, 
including generalized linear models (GLM), decision tree 
models, and Bayes models, to develop in-hospital mortality 
prediction models for STEMI patients. Besides, built-in feature 
selection strategies, including wrapper and embedded selection, 
were employed in some modeling processes.
� Generalized linear model. GLM generalizes ordinary 

linear regression by allowing the linear model to be related 
to the response variable via a link function, which is widely 
used in both medical statistics and machine learning due to 
its good prediction performance and interpretability. In this 
study, we applied logistic regression (LR), which is a GLM 
with a logit link function and a binomial distribution, and 
Cox proportional hazards model [13], which is a semi-
parametric GLM that takes into account the time of 
censoring. We also employed forward stepwise feature 
selection, which is a wrapper selection model, to evaluate 
the performance and statistical significance of the LR and 
Cox models under different selection of features.

� Decision tree model. Decision trees are very easy to 
interpret and therefore have been successfully applied in 
healthcare. Decision tree learning algorithms usually 
embed feature selection into the learning process of a 
model when splitting the source data set into subsets. In 
this study, we employed the Chi-squared automatic 
interaction detector (CHAID) [14] method to build tree-
based prediction model. CHAID is an efficient statistical 
technique that uses significance of Chi-squared test as a 
criterion for tree growing. We also employed random 
forest [15], which constructs multiple random decision 
trees and integrate the outputs of the trees for prediction. 
Compared to single decision tree models like CHAID, 
random forest reduces the problem of over-fitting, but has
worse interpretability. 

� Bayes model. Bayes models can learn probabilistic 
relationships among features and an outcome; computing
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the probabilities of the outcome given the features. The 
Bayes models are also interpretable based on Bayes 
theorem. In this study, we employed naive Bayes [16], 
which is a Bayes model with strong independence 
assumptions between the input features and therefore can 
be trained very efficiently. We also applied Bayes network
[17], which is a probabilistic graphical model that 
represents features and their conditional dependencies via 
a directed acyclic graph, where both the dependencies 
between outcome and input features and the 
interdependencies among input features can be modeled. 

Results

We evaluated the performance of our approaches in building in-
hospital mortality risk prediction models for STEMI patients 
from the CAMI dataset. The area under the receiver operating 
characteristic curve (AUC) were used to evaluate the prediction 
performance of models. We performed feature engineering and 
model learning on the training set, applied the learned models 
on the testing set, and evaluated the AUC on both datasets. 
We first generated four different feature sets by feature 
engineering:

1. None of the feature filtering methods were applied, all 
original 93 features were kept.

2. Univariate filter selection was performed to select 51 
features

3. CFS, which is a multivariate filter algorithm, selected
19 features

4. A combination of features from CFS and prior 
knowledge [3,4]. 

Then we built different learning models described above using
different feature sets and evaluated their prediction 
performance. The results are shown in Table 1, where the 
models with less features and higher AUC on the testing set are 
highlighted. Random forest and the Bayes network achieved the 
best performance when applied on all candidate features, but 
their performance cannot be increased by filter-based feature 
selection. In comparison, after performing filter-based feature 
selection, the performance of GLM methods (LR and Cox) 
increased. Moreover, the combination of auto-selected features 
by CFS and prior knowledge based features improved the 
prediction performance for the majority of learning models.
We also compared the performance of our approaches to the 
state-of-the-arts risk models: TIMI score [3] and GRACE score 
[4]. We applied both previous models and our trained models 
on the same testing set and computed the AUC.  As shown in 
Figure 4, the prediction performance of most of our models 
outweighed the TIMI and GRACE models.

Table 1 – AUC of different learning models on different feature sets
Feature selection 1) None 2) Univariate filter 3) CFS 4) Combination

Learning model No. 
feature

AUC
(train)

AUC
(test)

No. 
feature

AUC
(train)

AUC
(test)

No. 
feature

AUC
(train)

AUC
(test)

No. 
feature

AUC
(train)

AUC
(test)

LR 93 0.858 0.836 51 0.852 0.842 19 0.840 0.841 26 0.844 0.843
LR stepwise 21 0.846 0.839 19 0.845 0.839 15 0.840 0.840 17 0.842 0.843
Cox 93 0.853 0.829 51 0.849 0.838 19 0.839 0.840 26 0.842 0.842
Cox stepwise 21 0.842 0.835 18 0.843 0.835 14 0.838 0.838 16 0.840 0.839
CHAID 11 0.818 0.796 11 0.818 0.794 7 0.811 0.801 7 0.811 0.801
Random forest 93 0.917 0.849 51 0.915 0.842 19 0.898 0.843 26 0.901 0.846
Naive Bayes 93 0.820 0.818 51 0.820 0.823 19 0.817 0.820 26 0.821 0.825
Bayes network 93 0.872 0.846 51 0.867 0.840 19 0.865 0.835 26 0.868 0.835

Figure 2 – AUC of different models, evaluated on the same testing set.

Figure 3 – CHAID tree model on CFS feature set
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Since the objective of this work was to develop in-hospital 
mortality prediction models that can be used in real world 
clinical practices, the interpretability of the models was as 
important as the prediction performance. Table 2 shows the 
stepwise LR model built on the Combination feature set (AUC: 
0.842, 95% confidence interval (CI):0.826-0.859). As a 
traditional regression analysis model, the contribution of each 
selected feature can be represented by the odds ratio (OR), and 
its statistical significance can be evaluated using 95% CI and p-
value. For example, in the LR model of Table 2, for every 10-
year increase in age the odds of in-hospital mortality multiplies
by 1.654. The cox regression models are similar for 
interpretation, where the contribution of each feature can be 
represented by the hazard ratio. 

Table 2 – Stepwise LR Model on Combination feature set 

Feature OR 95% CI p
History of CABG 5.278 1.482 18.795 0.010 
Cardiac shock 2.346 1.631 3.374 <0.001 
Killip = I (referent) <0.001 
Killip = II 0.892 0.679 1.173 0.414 
Killip = III 1.449 1.012 2.074 0.043 
Killip = IV 1.910 1.317 2.770 0.001 
Atypical presentation 1.776 1.305 2.418 <0.001 
Age (per 10) 1.654 1.515 1.807 <0.001 
Malignant arrhythmia 1.496 1.137 1.969 0.004 
Anterior STE 1.346 1.111 1.631 0.002 
Heart failure 1.326 1.019 1.727 0.036 
Heart rate (per 10) 1.224 1.172 1.277 <0.001 
Potassium (per 1) 1.210 1.037 1.413 0.016 
WBC (per 10^9) 1.083 1.058 1.109 <0.001 
Glucose (per 1) 1.051 1.026 1.075 <0.001 
Creatinine (per 10) 1.039 1.025 1.053 <0.001 
Weight (per 10) 0.888 0.804 0.982 0.020 
SBP (per 10) 0.872 0.839 0.907 <0.001 
Living with spouse 0.743 0.604 0.913 0.005 
Sex (male) 0.666 0.539 0.821 <0.001 

Though the AUC of the CHAID tree models are not as good as 
our other models, the CHAID model has the very clear 
interpretation. As shown in Figure 3, in the CHAID model built 
on the CFS feature set, the whole dataset can be split into four 
subgroup with very different mortality rates by Killip level. 
Also, the patient group with Killip = I can be further divided 
into four smaller subgroups by age. Therefore, each patient 
belong to a leaf node in the tree that can be uniquely defined 
using a set of rules, and the mortality rate of this node 
(subgroup) is explicitly used to predict the patient’s risk. In 
contrast, though random forest achieved the best prediction 
performance on every feature set of this study, each random 
forest model has many different decision trees (100 trees in our 
setting) and is not easy to interpret.
A Bayes model can represent the conditional dependencies 
between input features and outcome, and also has good 
interpretability. Because the interdependencies between 
features are complex in the Bayes network models built in 
previous experiments, for demostration purpose we show the 
Bayes network model developed on the 12 well-known 
predictors using our training dataset in Figure 4. Both the 
dependencies between the outcome and the predictors (e.g., the 
death outcome has strong direct dependencies on creatinine, 
Killip level, heart rate, SBP and hypertension) as well as the 
interdependencies between the predictors (e.g., dependency 
between heart rate and Killip level, dependency between SBP 
and hypertension, etc.) are clearly represented in the Bayes 
network model. 

Discussion

In this study, we compared the prediction of several feature

Figure 4 – Bayes network model built on knowledge-based 
features. HR = heart rate; Cr = creatinine; CA = Cardiac 
arrest, TTT = time to treatment; ASTE = anterior STEMI;

HTN = hypertension

selection and supervised learning methods in building in-
hospital mortality prediction models for STEMI patients. For
GLM models (LR and Cox), appropriate feature selection can 
not only reduce the model complexity, but also improves the 
prediction performance. This is probably because GLM makes
the assumption of no multicollinearity between the features, but 
the whole feature set is redundant, which negatively affects
prediction performance. The feature selection methods, 
including CFS, which minimizes the intercorrelation and 
stepwise selection that optimizes the performance and 
statistical significance, can reduce the redundancy of features 
and therefore increase prediction performance. In contrast, the 
random forest and Bayes network methods can handle the 
redundant and intercorrelated features and therefore achieved 
the best prediction performance on the whole feature set. 
Moreover, the known predictors from prior knowledge [3,4] 
were grounded in previous evidence. Adding them to the auto-
selected features from our dataset essentially includes the 
information outside the dataset, and therefore improved the 
prediction performance.
We also compared the interpretability of different machine 
learning models for risk prediction. As there is a trade-off 
between prediction performance and model interpretability, the 
choice of machine learning models may vary depending on the 
real-world clinical scenario. 

5. Clinicians need to quickly estimate a patient’s risk 
without any decision support tool requiring a human-
memorable risk prediction model. Though the 
prediction performance of a single decision tree model 
(e.g., the CHAID model, Figure 3) is usually not as 
good as other machine learning models, it is human 
understandable and memorable, and is very suitable for 
this scenario. 

6. Clinicians can predict a patient’s risk with an 
independent risk prediction tool, such as a risk 
calculator, but still needs to manually input the 
predictor values. For these cases, a model that is 
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developed by combining feature selection and GLM 
(e.g., the stepwise LR model in Table 2) can provide 
decent prediction performance while keeping the input 
workload acceptable. 

7. Clinicians can directly load a patient’s data from the 
health information system (HIS) to perform risk 
prediction. For these cases, the complex risk prediction 
models with higher prediction performance (e.g., 
Bayes network and random forest models built on the 
whole feature set) can be used in clinical decision 
support. 

For the purpose of interpretability, we did not apply more 
complex machine learning models such as deep neural network 
(DNN). However, there already have been attempts to make 
traditionally uninterpretable models interpretable. For example, 
Che et al. [18] developed a mimic learning approach, which can 
derive interpretable decision tree models from DNN models 
and maintain DNN’s strong prediction performance. For future 
work, we would follow this direction in order to develop 
interpretable risk prediction models with higher prediction 
performance. 
Another limitation of this work is that we only used a standard 
data imputation method based on column mean, median, and
mode to remedy missing values. Some more advanced 
statistical imputation methods like multiple imputation, as well 
as the machine learning based imputation methods such as k-
nearest neighbors imputation and neural network imputation, 
could be tried in the future, to make a more accurate estimation 
for missing values. 

Conclusions

ST-elevation myocardial infarction (STEMI) is a major cause 
of hospitalization and has high in-hospital mortality rate. 
Accurate and interpretable prediction of in-hospital mortality is 
critical for clinical decision making to STEMI patients. In this 
study, we used integrated machine learning approaches, 
including the feature engineering and supervised learning
methods that have good interpretability, to build in-hospital 
mortality prediction models for STEMI patients from CAMI 
data. The experimental results show that our models achieve 
higher prediction performance than previous models, and are 
also easily interpretable for clinical decision support.
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