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Abstract

Computer-aided learning systems (e-learning systems) can 
help medical students gain more experience with diagnostic 
reasoning and decision making. Within this context, providing 
feedback that matches students’ needs (i.e. personalised 
feedback) is both critical and challenging. In this paper, we 
describe the development of a machine learning model to 
support medical students’ diagnostic decisions. Machine 
learning models were trained on 208 clinical cases presenting 
with abdominal pain, to predict five diagnoses. We assessed 
which of these models are likely to be most effective for use in 
an e-learning tool that allows students to interact with a 
virtual patient. The broader goal is to utilise these models to 
generate personalised feedback based on the specific patient 
information requested by students and their active diagnostic 
hypotheses.
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Introduction

Diagnostic reasoning is the cognitive process of deriving a 
correct diagnosis from a patient’s presenting clinical problem. 
The development of diagnostic reasoning skills in medical 
training starts with a disease-oriented approach by learning 
common presentations of different diseases [1]. Given this 
knowledge, students approach patients with a presenting 
problem and hypothesise the most likely diagnosis. They 
gather patient information through the steps of history taking, 
physical examination, and consideration of the results of 
laboratory procedures and other investigations. Students 
accumulate the information to prune and prioritise possible 
diagnoses until they get to a final diagnosis [2]. During 
medical training, students practice diagnostic reasoning skills 
with patients under expert supervision, called “bedside 
teaching”. Students gather patient information and present 
their diagnostic reasoning to the expert. The expert identifies 
errors, misconceptions and inadequacies and formulates 
suitable feedback to help students to reconstruct their 
knowledge [3]. Personalised feedback is a key element of
learning and instruction [4-6] and bedside teaching is known
to improve diagnostic reasoning skills. However, its use is 
declining due to a range of factors, including increased patient 
turnover, concerns with patient privacy, increased technology 
in the diagnostic process, increased numbers of students, and
limited availability of experts [7; 8].
E-learning systems can help to address some of these 
challenges and when used effectively, in conjunction with
traditional approaches, can aid in the development of
diagnostic reasoning skills [9-11]. However, tailoring the 

feedback from e-learning systems so that it is both effective 
and fits the needs of individual students is difficult [4; 12].
Effective feedback should help the student to identify what 
they already know or have mastered, where potential 
knowledge gaps or misconceptions lie, provide an indication 
of their learning progress, and support them to achieve their
learning goals [13].
Clinical Decision Support Systems (CDSS) are computer 
systems that assist doctors to make decisions and are typically 
used in either the diagnostic process or to support clinical 
management. CDSS synthesise information based on patient 
data and use the information to generate a prediction. Prior 
research has demonstrated that using a CDSS to assist 
physicians' diagnostic and treatment processes can improve
both the effectiveness and efficiency of patient care [14-16], a 
clear example being the management of acute abdominal pain 
[17]. Applying the concept of a CDSS, we aim to use machine 
learning models to produce personalised feedback within an 
adaptive game-based learning tool intended to support the 
development of medical students’ diagnostic reasoning and 
decision-making skills. The learning tool will allow students
to interact with a virtual patient, and revealing relevant patient 
information and diagnostic predictions in response to the 
students’ actions and requests.
This paper presents the development of the machine learning 
model that underpins the e-learning tool. It describes the 
collection and processing of a large corpus of patient data, and 
the development, training, testing and comparison of 
alternative machine learning models based on these data. A
preferred model is identified and the rationale for its selection
in the context of the e-learning tool explained. We also discuss 
how this model may be leveraged within the tool to generate 
personalised and appropriate feedback for medical students.

Methods

Phase I: Data collection

Electronic patient records were collected to train the machine 
learning models. We captured and processed de-identified 
medical data from three disparate but complementary sources;
1) Student log cases 2) Student entered Electronic Health 
Records (created by medical students at our university as part 
of their course and stored within their curriculum delivery 
system 3) Electronic health records within the public hospital 
affiliated with our university’s medical school. The data were 
used to develop clinical scenarios to be presented within the 
learning tool and to train machine learning models for of the 
learning tool’s embedded CDSS. All data collection was
approved either by our university’s Health Sciences Human 
Ethics Sub-Committee or by the affiliated hospital’s Human 
Research Ethics and Research Committee.

MEDINFO 2017: Precision Healthcare through Informatics
A.V. Gundlapalli et al. (Eds.)
© 2017 International Medical Informatics Association (IMIA) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-830-3-447

447



Phase II: Case selection

We selected cases from the electronic systems with the 
following inclusion and exclusion criteria:
Inclusion criteria

1. A principal diagnosis of one of five key conditions 
(appendicitis, gastroenteritis, urinary tract infection, 
ectopic pregnancy, or pelvic inflammatory disease).

2. The treatment protocol for the principal diagnosis was 
completed.

Exclusion criteria

1. More than one of the conditions of interest were 
diagnosed in an individual patient in the same 
admission.

2. A previous history of other conditions or procedures or 
treatments that would rule out one or more of the key 
diagnoses (e.g. appendectomy for appendicitis).

Two hundred and ninety-eight clinical cases were identified 
by applying the query criteria. Ninety cases were excluded 
leaving 208 valid clinical cases (see Table 1).

Phase III: Data pre-processing

PK manually extracted data from the selected cases and 
transformed the information into an array of features. Seventy-
five features were extracted from history taking (n=48),
physical examinations (n=13), laboratory and investigation 
results (n=13), and a target class (n=1).

Table 1 – Sample size per diagnosis

Diagnoses n
Appendicitis (AP) 51
Gastroenteritis (GE) 53
Urinary tract infection (UTI) 68
Ectopic pregnancy (EP) 11
Pelvic inflammatory disease (PID) 25
Total 208

Phase IV: Machine learning training

We used pre-processed clinical features from Phase III to train 
machine learning models for classifying the features into one 
of the five target diseases. We utilised Weka version 3.8 [18]
for the training process using 10-fold cross validation on a 
training set to evaluate alternative algorithms: testing Naïve 
Bayes, Support Vector Machine (SVM), Neural Networks 
(NN), C4.5 decision tree (J48), and Logitboost (using 
DecisionStump as a classifier). We used the correlation 
attribute evaluation to rank the level of feature relevance to 
predict a diagnosis. We intend to use one or more of the
machine learning models to predict diseases when students 
raise possible diagnoses on the basis of clinical observations.
We plan to transform the prediction of the classifier to a 
suitable form of feedback to represent the likelihood of 
diagnosis based on present findings. The rank of a given 
feature’s relevance in the model will be used to guide 
students’ feature selection.
We grouped the target classes in two ways. First, we treated 
the entire dataset as a single group and targeted classification 
of the five diseases considering all diagnoses together, which
is a “multi-class classification” scenario. Second, we divided 
the target classes into two groups, to create a “binary 
classification”. In this case, the first group contains one of the 
target diseases, with all others being assigned to the second 
group. The diagnoses in the second group are then merged 
into a single class – e.g. the classifier makes a decision 
between “appendicitis” and “not appendicitis”.

Results

Multi-class classification result

Table 2 shows the percentage of overall correctly classified 
instances from six machine learning models. ZeroR (majority 
class classifier) provides a baseline performance. All 
classifiers predict better than the baseline but the top three 
classifiers were Logitboost, NaïveBayes, and Neural Network, 
shown in bold.

Table 2 – Accuracy of multi-class classification

Classifiers % Accuracy
ZeroR 32.69
J48 66.35
SVM 72.60
NN 84.62
NaïveBayes 85.10
Logitboost 94.71

Table 3 shows the F1-measure of classification in different 
diagnoses. Logitboost predicts all diagnoses with the highest 
performance (F1-measure between 90 – 99%), and performed 
substantially better than all other classifiers in the case of EP.

Table 3 – F1-measure

AP GE UTI EP PID
ZeroR 0.000 0.000 0.493 0.000 0.000

NaïveBayes 0.887 0.857 0.889 0.571 0.793

SVM 0.755 0.755 0.786 0.455 0.480

NN 0.857 0.862 0.949 0.375 0.679

J48 0.706 0.627 0.744 0.167 0.500

Logitboost 0.923 0.925 0.993 0.900 0.939

The distribution of correct and incorrect classifications 
(confusion matrix) in different diagnoses appears in Table 4 
for Naïve Bayes and Table 5 for Logitboost. Diseases in rows 
and columns represent the true and predicted diagnoses, 
respectively. AP, EP, and PID have the most instances of 
misclassification.

Table 4 – NaïveBayes confusion matrix

predicted
AP GE UTI EP PID

true
AP 47 1 2 1 0

GE 4 45 0 0 4

UTI 1 6 56 2 3

EP 2 0 0 6 3

PID 1 0 0 1 23

Table 5 – Logitboost confusion matrix

predicted
AP GE UTI EP PID

true
AP 48 3 0 0 0

GE 3 49 1 0 0

UTI 0 0 68 0 0

EP 1 0 0 9 1

PID 1 1 0 0 23

Table 6 shows selected key decision features from J48 
decision tree (not shown) which are correlated to clinical 
knowledge.
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Table 6 – Key decisions for the diagnoses on J48 decision tree

Diagnoses Features
AP Right lower abdominal pain
GE Upper abdominal pain

Diarrhea
UTI Dysuria

Lower abdominal pain
EP Serum hCG
PID Serum hCG

Binary classification result

Table 7 shows the F1-measure score of binary classifications 
for individual diagnoses, using the NaïveBayes and 
LogitBoost classifiers. The first and second sub-columns 
under the classifier column represent the first and second
groups in the binary classification, respectively. The last sub-
column is the average F1-measure in the first two sub-
columns. LogitBoost classifies all target diagnoses with good
accuracy whereas NaïveBayes registers a significant drop for
EP.

Table 7 – F1-measure of the binary classifications

Naïve Bayes LogitBoost

X not X Avg X not X Avg

AP 0.851 0.952 0.928 0.832 0.949 0.918

GE 0.874 0.958 0.937 0.882 0.962 0.942

UTI 0.894 0.951 0.932 0.963 0.982 0.976

EP 0.500 0.969 0.945 0.952 0.997 0.995

PID 0.724 0.955 0.928 0.939 0.992 0.985

Feature selection

Feature selection on multi-class classification

The most highly ranked features with respect to the multi-
class classification were a history of left abdominal pain and 
the patient’s age. The top ten features, all of which returned a 
percentage relevance of at least 15% are listed in Table 8. 

Table 8 – Top 10 features of the multi-class classification

Ranked features % relevance
Left abdominal pain history 31
Age 25
Lower abdominal tenderness 20
Guarding 19
Upper abdominal pain history 18
Vomiting 16
Rovsing’s sign 16
Rebound tenderness 16
Leukocyte in UA 15
Pain quality 15

Feature selection on binary classification

We also measured the correlation of features to individual 
diagnoses, based on the binary classification model. Table 9 
shows selected features across the five diseases. Symptoms 
such as age, gender, location of abdominal pain, 
characteristics of pain, fever, gastrointestinal, urinary tract 
system, and gynaecological histories are useful in 
distinguishing between the different diseases. Right lower 
abdominal pain and pain migration are more specific to AP. 
Diarrhea is more specific to GE. Urinary tract symptoms are 
more specific to UTI. UPT and serum hCG are most specific 
to EP, while gynaecological symptoms and laboratory result 

for sexual transmitted diseases are most strongly correlated 
with PID. 

Table 9 – Selected features of the binary classifications

Features Relevant features
AP Right lower abdominal pain, pain migration

GE Diarrhea

UTI Dysuria, urine colour, haematuria

EP UPT, serum HCG

PID Vaginal discharge, PCR for Chlamydia

Discussion

Retrospective vs prospective data collections:

We used a retrospective data collection method to collect
clinical cases for training machine learning models. Unlike 
prospective approaches, this meant we were unable to 
constrain the records within a single template. Further 
limitations of this method included the variable formatting and 
structure of records, missing values, and temporal data. Our
reliance on different data sources (even within the one hospital 
it is not unusual for different clinical departments to use 
different electronic health record systems) created a range of
data entry and processing issues related to feature definition, 
type and sequence as well as clinical interpretation. This 
variation introduced considerable noise, reducing data validity 
and complicating data pre-processing. Many of these issues 
would undoubtedly have been reduced in the case of
prospective data collection, as requirements or 
recommendations around record creation can be more closely 
defined and monitored. However, prospective data collection 
would have required considerable additional planning on our 
part, and carried substantial additional time and administrative 
costs that are likely to have been unacceptable to hospital staff 
given their heavy workloads. 
Table 10 shows pros and cons of retrospective and prospective 
data collection. In summary, retrospective data collection is 
simpler with lower costs and does not impact on patients’
treatment. Prospective data collection, on the other hand,
provides higher quality data and data validity but is likely to 
involve unacceptable costs.

Table 10 – Pros and cons between retrospective and 
prospective data collection

Factors Retrospective Prospective
Budget less more
Increase work for treatment 
process

no yes

May influence treatment process no yes
Sample size flexible restricted
Quality of data poor to good very good
Data validity poor to good very good

For this study, we utilised case records provided in three 
different digital formats: plain text, scanned documents 
(images), and Word documents. The majority of these were 
extracted from the hospital’s record databases. The number of 
records available to us were sufficient for our purposes except
in the cases of EP and PID, because patients diagnosed with 
those two diseases tend to be admitted to a specialist women’s
hospital rather than the general hospital involved in our study.
Inclusion and exclusion criteria were used to filter the cases 
because certain histories have a critical impact on formulating 
a list of possible diagnoses. For example, a patient who has 
had their appendix or ovaries removed should never be 
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diagnosed with AP or EP, respectively. Those histories 
provide a spot conclusion rather than enhancing the 
development of diagnostic reasoning processes.

Data pre-processing

Before PK started extracting data, he listed common 
presentations of the five diseases from medical standard 
textbooks [19-23]. He used standard medical terms from 
UMLS [24] and SNOMED CT [25] to identify and organise 
features and synonyms. Seventy-two (72) of 75 available 
features contained some missing values (only age, gender, and 
target diagnosis were complete). Missing values commonly 
occur because admitting doctors deem it as self-evident, 
unnecessary or irrelevant. For example, doctors will never ask 
questions about menstrual history, or order a urine pregnancy 
test and serum hCG for male patients. Similarly, a normal
urine finding typically infers a negative finding in relation to 
all abnormalities of the urinary tract.
Symptoms also typically change over time. For example, the 
location, severity and quality of pain, and whether the pain is 
relieved by medication, can all change as a disease progresses.
In the case of the location of pain, we divided pain location 
into two episodes – prior to and at admission. If these were 
different then the pain had migrated. More generally, we only 
used symptoms and signs from records created in the
emergency department or on first admission to a hospital ward 
to reduce the effects of timing and treatment.

Clinical interpretation of classification results

The top three classifiers were Logitboost, NaïveBayes, and 
Neural Network, which all had a predictive accuracy above 
80% (see Table 2). The Logitboost algorithm improves the 
results of a classification by reweighting mis-classified 
samples and taking a weighted majority vote to form training 
data [26]. It returned a significantly higher overall predictive 
accuracy than either NaïveBayes or Neural Network 
classifiers due to its superior predictive performance for EP 
(see Table 3). The classification performance for EP was low
for all other algorithms due to a combination of low record 
numbers and missing data. We believe that Logitboost 
performed well despite these issues because of its use of a
Decision Stump; a subroutine within Logitboost that analyses
patterns of missing data to develop rules for classification.
When we considered the distribution of misclassified EP over 
other diseases predicted by NaïveBayes (Table 4) and 
Logitboost (Table 5), the models were more likely to mis-
classify EP as either AP and PID, which have a number of 
overlapping symptoms, rather than UTI or GE. By way of 
comparison, in a series of early studies, de Domal and 
colleagues [27; 28] used a CDSS employing a Bayesian 
classifier to predict abdominal pain within 600 prospectively 
collected clinical cases. They reported an overall diagnostic 
accuracy of 91.8%.
Table 11 compares the research methods and classification 
results for the current and these earlier studies when using a 
similar classification approach [27]. In this case, the machine 
learning model developed by de Dombal had the higher 
overall classification accuracy. We noted the key success 
factors in the de Dombal study were sufficient samples, equal 
distribution of sample, and the quality of input data.
While all classifiers apart from the baseline (ZeroR) provided 
more accurate predictions than the J48 algorithm, it is the only 
one that produces human-readable output. Its decision tree
style output is easily interpreted and has the potential to 
provide useful feedback to users during the decision-making 
process.

Table 11 – Comparison of research methods and 
classification result between two studies

Methods/Result this study de Dombal
Data collection retrospective prospective
Sample size 208 600
Machine learning method NaïveBayes NaïveBayes
Target classes 5 7
Overall accuracy 85.10 91.80

Key features

For multi-class classification, left abdominal pain appears to 
be a key feature as it positively selects for those diseases 
presenting with lower abdominal pain – appendicitis, ectopic 
pregnancy, and pelvic inflammatory disease. Gastroenteritis 
and urinary tract infection are less likely to be selected
because the pain position for these two diseases is more 
diffuse. However, a history of left abdominal pain reduces the 
probability of appendicitis and indicates more strongly ectopic 
pregnancy or pelvic inflammatory disease. Age is also an 
important factor, with appendicitis, ectopic pregnancy and 
pelvic inflammatory disease most strongly associated with 
younger patients. In the case of the binary classification, we 
were able to identify key diagnostic features associated with
each disease. We will use this information to help medical 
students to identify strongly relevant clinical information to 
support their diagnostic decisions.

Machine learning model selection

Our final choice of machine learning model for use in the
proposed learning tool is informed by two requirements:
clinically appropriate predictions; and classification 
performance. We give precedence to clinical interpretation 
because proper development of the diagnostic reasoning 
process is more important than maximising the number of 
correct decisions. Binary classification is preferred because it 
provides a better sense of scaling of the likelihood level than 
multi-class classification. And, while the overall prediction 
performance of NaïveBayes is slightly inferior to Logitboost, 
the NaïveBayes predictions are more reflective of actual 
clinical judgements. For example, Logitboost predicts zero 
probability of ectopic pregnancy on a female patient 
presenting with right lower abdominal pain, which is clinically 
inappropriate. Accordingly, we selected the NaïveBayes 
classifier in combination with binary classification as our 
preferred model.

Feedback representation

We plan to use the machine learning model to provide two 
types of feedback (�������� 	�
� ��	�) within the proposed
learning tool. Interim feedback will be based on the 
interpretation of predictive correlations between selected 
patient information and top three most likely diagnoses 
following the history taking, physical examination, and 
laboratory and investigations steps. Final feedback will 
present the correct diagnosis, and generate a user score based 
on how often the correct diagnosis is selected in the 
differential diagnosis list, correlation to the correct diagnosis,
and the inclusion of key patient information. 
We plan to use an overlap model to assess students’
performance (and potential learning gains) while using the 
tool [29]. This treats the student’s decisions (student model) as 
an incomplete model which can be compared to the machine 
learning model (complete model). The more similar these two 
models are, the higher the assessment of the student’s 
performance.
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Conclusion

Timely and clinically appropriate personalised feedback is key 
to the development of students’ diagnostic reasoning skills. E-
learning has a role to play here, through the provision of 
personalised and appropriately scaffolded feedback on 
students’ diagnostic decision-making on virtual patient cases. 
We propose to use diagnostic models derived through machine 
learning as the basis for giving relevant feedback. In this 
paper, we describe how we trained machine learning models 
using a large corpus of real clinical cases to develop
differential diagnoses related to presentations of abdominal 
pain. We selected a model that combines a Naïve Bayes 
classifier with binary classification for further use in the 
learning tool based on a combination of its predictive 
performance and the clinical relevance of that model’s 
predictions.
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