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Abstract

Phenotyping is an automated technique for identifying patients 
diagnosed with a particular disease based on electronic health 
records (EHRs). To evaluate phenotyping algorithms, which 
should be reproducible, the annotation of EHRs as a gold 
standard is critical. However, we have found that the different 
types of EHRs cannot be definitively annotated into CASEs or 
CONTROLs. The influence of such “possible patients” on
phenotyping algorithms is unknown. To assess these issues, for 
four chronic diseases, we annotated EHRs by using 
information not directly referring to the diseases and developed 
two types of phenotyping algorithms for each disease. We 
confirmed that each disease included different types of possible 
patients. The performance of phenotyping algorithms differed
depending on whether possible patients were considered as 
CASEs, and this was independent of the type of algorithms. Our 
results indicate that researchers must share annotation criteria
for classifying the possible patients to reproduce phenotyping 
algorithms.
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Introduction

Background and problems

To improve healthcare quality and clinical research, it is critical 
to identify patients diagnosed with a particular disease. As
structured data on diagnoses in electronic health records 
(EHRs) are limited in terms of accuracy and completeness [1, 
2], the demand for automated techniques for identifying 
patients diagnosed with a particular disease based on EHRs, 
so-called phenotyping, has been increasing [3, 4]. In previous 
studies, we applied published algorithms to EHR datasets of 
Japanese patients [5, 6], which required annotated EHRs as a
gold standard to evaluate the algorithms. Among the several 
annotation techniques, we chose manual annotation because it
is more accurate than others, and over 75% of previous studies 
employed it [4]. Through the annotation process, we found that 
it is often difficult to annotate EHRs as definite CASE or 
CONTROL patients as a gold standard [6].
Annotation criteria are critical for phenotyping algorithms 
because they directly affect the calculation of the algorithms’ 
performance. If researchers do not share how to annotate such 
“possible patients,” the published performance of a phenotyp-
ing algorithm would differ among research teams because the 
CASEs would differ, even if each dataset had identical char-
acteristics (Figure 1).

Figure 1– The performance of phenotyping algorithm (recall)
for classifying T2DM cannot be reproduced across institutions

due to the different annotation criteria for classifying the 
“possible patient (patient 2).”

Why is the annotation of possible patients indefinite?

In EHR annotation for type 2 diabetes mellitus (T2DM), we
identified three types of EHR data in terms of possible patients
[6]. Each of these suggests a different likelihood of T2DM, as 
shown in the following examples:

Example 1: Antiglutamic acid decarboxylase (GAD) 
antibody 1.6 U/mL and antiislet antigen 2 (IA2) antibody 
0.4 U/mL
Example 2: “...T2DM is likely...”
Example 3: “...He met the diagnostic criteria for DM... Type 
1 DM is unlikely because… Secondary DM is denied…”

In example 1, the explicit information about the disease name,
such as the direct noting of “type 1 DM,” is not provided, but 
the information implies a low possibility of T2DM; that is, the 
high value of the anti-GAD antibody or anti-IA2 antibody 
suggests type 1 DM. Example 2 includes an explicit but in-
definite description (“likely”), and the annotation result may 
differ among annotators. Example 3 provides no direct 
information about the type of DM, but the contextual 
information can increase the conviction that the patient has
T2DM; that is, it denies other types of DM. These ambiguous 
descriptions are sufficient for medical experts who have 
medical knowledge, and they sometimes dare to describe EHRs 
ambiguously to accurately record the facts when they cannot 
diagnose patients with certainty [7]. However, these
descriptions are not necessarily sufficient for researchers who 
sometimes expect the definite truth. This is one of the essential 
limitations of retrospective EHR-based studies across 
institutions or countries. Moreover, the fact that each patient’s 
EHRs contain many such ambiguous descriptions makes
reproducible annotation difficult.
As surveyed, one study separated definite and possible CASEs 
to identify rheumatoid arthritis and grouped possible CASEs 
with CONTROLs [8]. For other diseases, such as multiple 
sclerosis, the possible patients were identified for multiclass 
classifications [9–11]. However, they have not shown multiple
types of possible patients, and the published annotation criteria 
were disease dependent. For other diseases, even the existence 
of possible patients as a gold standard has not been examined. 
No studies have shown whether the performance of a
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phenotyping algorithm will be influenced by which types of
possible patients are classified as CASEs. We aim to 
quantitatively clarify these issues and mitigate the ambiguities 
to facilitate reproducible phenotyping algorithms [12].

Research objective, novelty, and related work

We analyze EHR data to examine the impacts of the annotation 
criteria for classifying possible patients on (1) the proportion 
and characteristics of CASE patients and (2) the performance 
of phenotyping algorithms. To accomplish this, we create a
nonbinary annotation method based on the conviction of a 
target disease. Our targets are four chronic diseases. This 
study’s originality is to handle directly the uncertainties in
records of diseases and their influences on the algorithms’ 
performance using real world data. One study simulated the 
loss of power of phenotyping algorithms due to bias in the EHR 
data [13], but did not mention the information bias related to 
the annotation criteria. No phenotyping studies have addressed
the uncertainties in disease records [7].

Methods 
Target diseases, eligible subjects, and EHR data

Our targets are four diseases from the Unified Medical 
Language System (UMLS) Metathesaurus—common diseases: 
(i) T2DM and (ii) essential hypertension (HT); and rare 
diseases: (iii) primary biliary cirrhosis (PBC; the full disease 
name is changed since approximately 2015 [14], but this study 
used data until 2014) and (iv) autoimmune hemolytic anemia 
(AIHA). We selected chronic diseases, which have associated 
clinical guidelines in Japan [15–18], to focus only on the 
presence of diseases. A disease must be diagnosed through a
combination of several tests. If a disease can be diagnosed 
using one test, it does not require a phenotyping algorithm. This
study involved 650 patients (mean age 52.6; 57.2% female)
randomly selected out of 104,522 patients who made at least 
two visits to the University of Tokyo Hospital between 
1/1/2009 and 12/31/2014 and at least one visit in 2012. We 
used the EHR data over six years (2009–2014).

Detailed annotation (DA) method

In this study, annotators checked EHR data retrospectively and
determined a “CASE” based on the degree of conviction that
the patient had a target disease, which was recorded in EHRs by 
clinicians who examined the patient. The examples of EHRs in
the Introduction section suggest that possible patients should be 
annotated into several types and that annotation should be 
independent of the data structure. Labelling the information 
itself would be useful for reproducible annotation of any EHRs
because the annotation results would differ among research 
teams using different information. We divided the information 
in the EHRs into two axes, namely explicit information and 
context (Figure 2); moreover, along each of the two axes, we
classified the elements affecting multilevel degree of 
conviction of a target disease. We have called this the detailed 
annotation (DA) method (Table 1).

Figure 2– Annotation axes: explicit information and context.

Explicit information includes definite (Table 1(a), (d)) and 
possible ((b), (e)) descriptions of disease names, and meeting
the diagnostic criteria ((c), (e)), which means that annotators
can retrospectively determine that the patient met the 

diagnostic criteria. The description “T2DM is likely” is an
explicit, possible description of the target disease (T2DM) and 
belongs to explicit information (b). Contexts include the EHR 
data implying a target disease (�); upper diseases (�); and the 
absence ((�), (�)) and presence (�) of differential diagnoses
and sibling diseases; and possible ( � ) and definite ( � )
descriptions of diseases which are treated by the same 
medication used for the target disease. For T2DM, the 
description “Type 1 DM is unlikely” belongs to context (�)
because T1DM is a sibling disease of T2DM; this description
implies T2DM. The pair of the structured data of the high 
values of the anti-GAD antibody and anti-IA2 antibody belongs
to context (�) because they suggest T1DM. For essential HT, 
the narrative and definite descriptions that the patient is medi-
cated with an antihypertensive drug not for HT but for angina
belongs to (�); this description implies weak conviction that the 
patient has essential HT.
The combination of each element of each of the two axes leads 
to the seven categories of disease conviction, from a definite 
CASE (category (1)) to a definite CONTROL (category (7)). 
As an intermediate concept, category (4) indicates the upper 
disease. A patient with explicit information (b) and context (�)
is classified into DA category (2). Patients in the categories 
(2)–(6) are possible patients.

Experimental setups

Two clinicians (authors) each annotated the EHRs of all 650 
patients for each of the four diseases based on the DA
categories. The annotators discussed and made final decisions
for mismatches. We used Fisher’s exact test and Fisher’s 
pairwise exact test (Bonferroni correction) to compare the 
proportion of possible patients among the diseases. To analyze 
the patients’ characteristics according to the DA categories, we 
performed statistical analyses of the null hypothesis that the 
averages of the maximum value of each lab test of each patient
or the proportions of each element used in the guideline-based 
phenotyping algorithms (described later) would be equal 
among the categories. For continuous data, the variances of 
each category were found to be unequal by a Bartlett test; the 
nonparametric Kruskal–Wallis test and the Mann–Whiteney U
test (Bonferroni correction) for pairwise comparisons were
performed. For categorical data, we used Fisher’s exact tests 
and Fisher’s pairwise exact test (Bonferroni correction). The 
threshold for significance was p<0.05. We used R-3.1.3, the 
coin package 1.1-2, and the fmsb package 0.5.2.
To assess the impact of the annotation criteria on the 
performance of phenotyping algorithms, authers developed 
rule-based phenotyping algorithms for each disease (Table 2) 
using data that are referred in each guideline [15–18] and are 
stored according to HL7 2.5 (ISO 27931:2009). We call these
guideline-based (GB) algorithms. For each algorithm, we 
changed the annotation criteria by altering the threshold of the 
DA category in which patients are considered as CASEs from 
the category (1) to (6), and calculated the values of the 
evaluation metrics at each threshold. The DA category (7) was
excluded from the threshold because it was an unrealistic as-
sumption for all patients (the categories (1)–(7)) to be CASEs.
The evaluation metrics are as follows: recall is True Positive 
(TP)/(TP+False Negative (FN)), precision was TP/(TP+False 
Positive (FP)), specificity was True Negative (TN)/(TN+FP), 
and negative predictive value (NPV) was TN/(TN+FN). To 
examine whether the impact of the annotation criteria depended
on a particular phenotyping algorithm, we performed the same 
experiment for the other phenotyping algorithms, which used
only one billing code for each disease. We call these naïve 
algorithms. More detailed explanations of the DA method and 
phenotyping algorithms are presented on GitHub.1
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Table 1– The DA method. Degrees of disease conviction are classified into categories (1)–(7) indicating certainty, probability,
possibility, upper disease, the possibility of other diseases, the probability of other diseases, and definite other diseases respectively.
                                       Context (�) Increasing 

the conviction 
of the target 
disease

(�) Probable upper 
disease AND no sib-
ling diseases or differ-
ential diagnoses

(�) No other 
context 

(	) Possible diseases
which are treated by the 
same medications used 
for the target disease

(
) Decreasing 
the conviction 
of the target 
disease

(�) Definite 
denial of the 
target disease

Explicit information
         Diagnostic criteria Description

Target disease
name

(a) Definite (1) (1) (1) (1) (3) Contradiction
(b) Possible (2) (3) (4) (5) (5) (7)

(c) Meet (3) (4) (4) (5) (6) (7)
Upper disease 
name

(d) Definite (2) (4) or (6) 2 (4) or (6) 2 (5) (6) or (7) 2 (7)
(e) Meet (e) Possible (3) (4) or (6) 2 (4) or (6) 2 (5) or (6) 2 (6) or (7) 2 (7)

Both target
and upper

(f) None of the others (5) (6) (7) (7) (7) (7)
(g) Denial Contradiction (7) (7) (7) (7) (7)

Table 2– GB phenotyping algorithms developed in this study.

(i) T2DM: Patients with (A) AND ((B) OR (C)), modified [19]
(A) Excluding other types of DM
(B) Antidiabetic medication
(C) T2DM billing codes AND abnormal lab test more than two times. 
(ii) Essential HT: Patients with (A) AND (B)

(A) Excluding secondary HT
(B) HT billing codes except (A) OR medication of ARB/ACE inhibitor
(iii) PBC: Patients with (A) AND (B)

(A) Antimitochondrial antibody (AMA) is positive
(B) (�GTP 68 IU/L AND ALP 359 IU/L) OR PBC billing codes
(iv) AIHA: Patients with ((A) AND (B)) OR (C))

(A) More than four abnormal lab tests, which mean hemolytic anemia
(B) Direct Coombs test is positive AND (AIHA billing codes OR no billing

codes for other diseases that cause anemia)
(C) Disease names of AIHA in EHR, applying the technique in [20]

Figure 3– The numbers and distributions of patients classified
into each DA category differ among the diseases.

Figure 4– Changes in the performance of GB algorithms de-
pending on the threshold of CASEs differ among the diseases.

Results

Figure 3 shows the annotation results based on the DA 
categories (weighted  statistics = 1.00 for each disease). The 
mismatches between the annotations of two patients was
caused by an oversight of the EHRs and those of seven patients 
were caused by misunderstanding of the contexts. The category 
(7) included more than 500 patients for each of the four 
diseases and is excluded from Figure 3. All four diseases
included possible patients classified into DA categories (2)–(6).
The distributions of patients differed among the diseases. 
T2DM had a broad peak at the categories (1) and (2), and 
essential HT had a peak at upper disease (the category (4)).
PBC included patients in all DA categories, while AIHA did

not include patients in the categories (5)–(6). The proportions 
of possible patients to all 650 patients were not equal among the 
diseases (p<2.2e-16, two sided). Post-hoc test showed signif-
icant differences between all disease pairs (p<0.001) except the 
pair of PBC and AIHA (p=0.14).
If the characteristics of patients in the DA categories (1)–(6) 
were exactly equal, the degrees of disease conviction recorded 
by the clinicians in EHRs would be completely random, and the
classification of possible patients would not be necessary. We 
performed statistical analyses to assess this. Because the cate-
gory (7) indicates definite CONTROLs, it will naturally have 
different characteristics from the other categories and was 
excluded from the statistical analysis. The averages of the 
maximum HbA1c of each patient differed significantly among 
the DA categories (1)–(6) (Table 3(a)). Post-hoc tests showed
no significant difference for each category pair (Table 3(b)).
The other lab tests’ values did not differ significantly. The 
proportions of tests for glucose (p=0.048), tests for anti-GAD 
antibody (p=0.021), antidiabetic medication (p=0.0009), in-
sulin (p=0.040), T2DM billing codes (p=0.009), and T1DM 
billing codes (p=0.0002) differed significantly (two sided)
among the categories (1)–(6). A post-hoc test showed no sig-
nificant differences. Although not significant, the other cate-
gorical variables tended to exhibit higher proportions in the 
category (1) than that in the categories (2)–(6) collectively, i.e.,
PBC billing code and no billing codes for malignant neoplasms 
that cause anemia (regarding AIHA, Table 3(c)). 12

Figure 4 shows that the performance of each GB phenotyping 
algorithm changed depending on the threshold of the DA cat-
egory in which patients were considered as CASEs. The values
of the evaluation metrics at the threshold DA category (2)
(hereinafter called th(2)) indicated the values when the definite 
CASEs (category (1)) and probable CASEs (category (2)) were
considered as CASEs. For essential HT, the recall decreased by 
50% as the threshold moved from th(1) to th(2) (Figure 4(ii)). It 
is because that the GB algorithm(ii)(A) excluded 5 out of 13 
patients in DA category (2) who had secondary HT billing 
codes, and that the GB algorithm(ii)(B) also excluded two 
patients in the category (2) (Table 2). The precision and the 
specificity increased by 69.2% and 13.1% from th(3) to th(4),
respectively; these changes were not found in other diseases. 
They depended on the 90-patient increase in TP patients and 
concominant decrease in FP patients, which were due to the 
peak at category (4) (Figure 3(ii)). In contrast, as the threshold 
moved from th(1) to th(6), the decrease in the NPV of PBC 
(0.66%) or AIHA (0.16%), and the increase in the specificity of 
AIHA (0.63%) were within 1% (Figure 4(iii), (iv)). PBC and 

1 https://github.com/rinabouk/medinfo2017
2 T2DM and essential HT are smaller in number; they account 
for more than 50% of upper diseases. PBC and AIHA are larger 
in number; they account for less than 50%.
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AIHA included significantly fewer patients in categories (2)–
(6). From th(1) to th(6), the changes in the numbers of TP, FP, 
FN, and TN patients and the changes in performance were 
smaller than for common diseases. The changes for T2DM 
were intermediate; the recall and NPV decreased by 9.73% and 
2.12%, respectively, and the precision and the specificity 
increased by 39.3% and 4.49%, respectively (Figure 4 (i)).
Figure 5 shows that the changes in performance of naïve 
algorithms, which exhibited the same patterns as in Figure 4 
except for the decrease in recall from th(1) to th(2) for essential 
HT.

Table 3(a)– The averages of the maximum HbA1c value of each 
patient were not equal in the DA categories (1)–(6).

(1) (2) (3) (4) (6) p-value
Maximum value of 
HbA1c of each patient
average (SD)

7.78
(1.21)
(n=35)

7.15 
(0.85)
(n=22)

8.20
(1.40)
(n=2)

6.76 
(0.16)
(n=5)

6.20 
(0.22)
(n=3)

0.007 

Table 3(b)– No significant differences between any two 
category pairs for the maximum HbA1c.

p-value Effect size p-value Effect size
(1) (2) 0.28 0.20 (small) (2) (4) 1.00 0.29 (small)
(1) (3) 1.00 0.02 (no) (2) (6) 0.17 0.56 (large)
(1) (4) 0.33 0.42 (medium) (3) (4) 1.00 0.82 (large)
(1) (6) 0.08 0.57 (large) (3) (6) 0.75 0.97 (large)
(2) (3) 1.00 0.14 (small) (4) (6) 0.25 0.70 (large)

Table 3(c)– Proportions of billing codes for malignant 
neoplasms that cause anemia in category (1) (11/14) tended to 

be lower than in categories (2)–(6) (3/1).

(1) (2) (3) (4) (5) (6) p-value
Patients with billing codes 11 1 0 2 0 0 0.21
Patients with no billing codes 14 0 1 0 0 0

Figure 5– Pattern of changes in the performance of naïve
phenotyping algorithms. These are the same as in Figure 4.

Discussion

Our experiments showed that for each of the four chronic 
diseases, it was necessary to determine how to annotate CASEs 
by dividing possible patients from definite CASEs and 
classifying each type of possible patients, to avoid research 
teams’ inclusion of different characteristics in their CASEs.
Consequently, the changes in performance of phenotyping 
algorithms following the alteration in annotation criteria dif-
fered among the diseases; this was considered to be inde-
pendent of the type of algorithms, that is, GB or naïve algo-
rithms. We suggest that these results support the importance of 
sharing annotation criteria in detail to reproduce algorithms.

The characteristics of possible patients

The different distributions of patients among the diseases
(Figure 3) are clinically plausible. Clinicians can diagnose 
T2DM willingly by a combination of simple lab tests or 
symptoms [15]; many clinicians were assumed to diagnose 

T2DM with strong conviction (category (1)) or describe in-
formation that inferred T2DM (category (2)). Essential HT is a 
diagnosis by the exclusion of secondary HT [16]; most clini-
cians only describe “HT” when referring to essential HT. This 
was assumed to be the reason for the peak at category (4). PBC 
and AIHA are rare diseases; then, specialists diagnose most 
patients with strong conviction (category (1)) [17, 18]. Further,
the upper disease of AIHA (acquired hemolytic anemia) is rare,
while that of PBC (fibrosis and cirrhosis of liver) cannot be 
sometimes diagnosed with certainty even by specialists 
because it is relatively common; then, PBC had a relatively 
higher proportion of possible patients compared to AIHA, and 
AIHA did not include the patients in categories (5) and (6).
The detailed annotation criteria according to the degrees of 
disease conviction recorded by the clinicians reflect patient 
characteristics and clinicians’ rational assessments (Tables
3(a)–(c)). We considered that clinicians could neither diagnose 
patients with low HbA1c certainly nor describe the definite 
disease name for such patients, and the average of the 
maximum HbA1c of each patient in DA categories (4) or (6) for 
T2DM was relatively low. Similarly, it is suggested that the 
clinicians’ choices of lab tests, medications, or billing codes are
affected by the clinicians’ conviction of the diseases. It seems 
one reason no elements tended to be unequal among the 
categories for essential HT was that they included antihyper-
tensive medications for other diseases and the corresponding 
billing codes, independent of the conviction of essential HT.

Annotation criteria influence the reproducibility of 
phenotyping algorithms 

Many studies have applied phenotyping algorithms to multiple 
institutions and identical performance has not been achieved 
[19, 21]. Our findings suggest that even if the research teams 
used the same annotation criteria, the ambiguities of the criteria
and the corresponding different annotation results could lead to 
the different performance. This is a critical limitation when 
other teams attempt to reproduce published performance for
different datasets. Without detailed annotation criteria, other 
teams could not judge whether the different performance arises
from differences in annotation criteria, the different character-
istics of the study population, or the differences in available 
data or tools. Our results can guide researchers on this 
limitation; the robust metrics in terms of changing annotation 
criteria, such as the NPV of rare diseases, would be preferable 
for reproducing algorithms without shared annotation criteria.
In addition, failure to share annotation criteria could lead to 
erroneous interpretations of published performance. For 
example, the precisions of the GB algorithm for T2DM were 
39.3% different between th(1) and th(6) (Figure 4(i)).
We confirmed that these issues do not depend on the particular 
phenotyping algorithm; although only for essential HT, the 
decrease in recall by 50% from th(1) to th(2) was dependent on 
the GB algorithm. One simulation study showed that different 
gold standards led to the different sensitivity or specificity in 
diagnostic studies [22]. Our results were consistent with this,
and presented the first assessments of the different gold 
standards in studies for phenotyping algorithms using actual 
data. If all patients diagnosed with a certain disease had definite 
descriptions of the disease in their EHRs, no patients would be 
in the categories (2)–(6). Each evaluation metric would retain
the same value independent of our annotation criteria, and there 
would be four flat lines in Figure 4 or 5. The diseases examined 
in this study were not such cases. Higher recalls of essential HT 
and PBC, and precision of essential HT could be achieved 
using naïve algorithms, while the scope of this study was the 
change in performance. Which algorithm is better is to be 
determined based on each research objective or available data.
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Because the annotation criteria are to be determined according 
to the research purposes, they will naturally differ among 
studies. Thus, sharing annotation criteria in detail is critical in 
reproducing EHR-based studies.

Limitations and future work

To assess our results’ generalizability, we must evaluate them
with patients with other diseases at other hospitals in several 
countries. Lower weighted  statistics would be obtained from 
this study. Nevertheless, when applying the same phenotyping 
algorithm to different datasets, the strength of our DA method 
will not change because it clearly shows that the different re-
sults will arise from the different characteristics of the study 
population, or the differences in available data or tools.
Assessment of the impact of clinicians’ diagnostic errors is 
outside the scope of this study and must be done in the future 
work. We aim to evaluate phenotyping algorithms developed 
using other techniques. For machine learning, one study 
indicated that the precision was almost unchanged but the recall
differed according to the different training data [21]; thus,
different results would be obtained from this study. We will 
report on which elements used in the DA method can be 
extracted automatically in the near future. This will lead to a 
systematic strategy for the development of phenotyping 
algorithms [12].

Conclusion

Our results confirmed that if researchers do not share
annotation criteria in detail for classifying possible patients
separately from definite CASEs and for classifying each type of 
possible patients, the characteristics of CASEs would differ
among research teams; although phenotyping algorithms em-
phasize reproducibility, we cannot expect reproducible 
performance of the phenotyping algorithm. This was clinically 
rational for the four chronic diseases. In this study, we anno-
tated EHRs using the DA method. This could increase 
reproducibility of retrospective EHR-based studies because it 
achieves annotations with low ambiguity by using information 
not directly referring to target diseases. We expect that our 
results will guide researchers on the reproducibility of 
EHR-based studies.
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