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Abstract 

Twitter-based public health surveillance systems have achieved 

many successes. Underlying this success, much useful 

information has been associated with tweets such as temporal 

and spatial information. For fine-grained investigation of 

disease propagation, this information is attributed a more 

important role. Unlike temporal information that is always 

available, spatial information is less available because of 

privacy concerns. To extend the availability of spatial 

information, many geographic identification systems have been 

developed. However, almost no origin of the user location can 

be identified, even if a human reads the tweet contents. This 

study estimates the geographic origin of tweets with reliability 

using a density estimation approach. Our method reveals how 

the model interprets the origin of user location according to the 

spread of estimated density. 
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Introduction 

The recent rise in popularity and scale of social media has 

created a growing necessity for social-media-based public 

health surveillance. The feasibility of such approaches has been 

demonstrated using various associated information, including 

temporal information [1-2] and spatial information [3-5]. 

Temporal information is associated with all tweets, but spatial 

information is often unavailable for privacy reasons. One report 

described that fewer than 0.5% of tweets include GPS 

information [6]. This problem has become an important 

motivation for many studies of location estimation [7-11]. 

Recent studies have elucidated the characteristics of geo- 

tagged tweets using various approaches. These include location 

specificity of user attributes such as gender and age [12], 

linguistic variation [13], temporal effects on location 

classification accuracy [14], population biases [15], and 

content-based geographic density of tweets [16]. Our study is 

aimed at exploring the content-based characteristics of tweet 

location (System estimated location vs. Geo-tagged location) 

further. We also investigate differences between the estimated 

results and the interpretability of human estimation (System 

estimated location vs. human estimated location). The 

motivating examples of comparison to humans are shown in 

Figure 1. Based on these examples, even a human would have 

difficulty estimating the precise location. However, by some 

clues, we were able to infer the tweet origin weakly. As this 

example shows, we can have an idea of a tweet’s general region 

of origin. Therefore, unlike previous studies aimed at 

estimating the concrete region, our task is to estimate the 

probability density of the origin location, which more naturally 

fits human understanding. 

A recent study [16] was undertaken to estimate the location as a 

density estimation problem. Although their motivations 

resemble ours, this research represents the geo-location  

 

identifiability of a given tweet as a combination of word-

specific or n-gram-specific Gaussian Mixture Model (GMM). 

We summarize the contributions of this study as follows: 

• We provide simpler and more reasonable approaches to 

estimate the geographic region of a tweet. Although an 

earlier study [16] estimated GMM in each word 

independently, our method handles tweet contents in a 

vector representation. 

• We examine the relation between human inference and 

geographic biases of geo-tagged tweets. 

• We objectively and quantitatively evaluate the 

differences between human and model inferences. 

 

Figure 1 –Estimated geographic distribution of a tweet. “Gold” 

represents the true origin of the tweet and “Human” represents 

the human interpretation of the origin of user location from the 

tweet content. 

Materials 

Tweet Dataset 

We collected 554,320 geo-tagged Japanese tweets for a week 

(July 15, 2012 – July 21, 2012). For our purposes, we extracted 

tweets that were posted by Official Twitter clients: Twitter for 

iPhone and Twitter for Android. Consequently, our corpus 

comprises 204,748 tweets. 

To estimate the number of mixture components, we split tweets 

into a triplet of training, validation, and test data. We used 

144,748 tweets for training data and 30,000 tweets each for 

validation and test data. This is the section where the authors 

describe the methods used at the level of detail necessary to 

convey the sample size, setting, procedure, datasets, analytic 

plan, and other relevant particulars to the reader. 

Human Annotation Rule 

To evaluate how our model interprets origin locations of tweets, 

humans annotated Japanese region (8-way) or prefecture (47-

way) labels for 5,000 tweets that were sampled randomly from 

the test data. Tweet data with several granularity labels were 

annotated independently by two annotators. To avoid birthplace 

and residential place biases, we permitted rough searching for 
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the word included in a tweet to identify its origin location. The 

human agreement rate was 93.6%, as measured by 100 tweets 

sampled randomly from the annotated ones. Table 1 presents 

the results, which indicate the difficulty of this task, in which 

most tweets were not identified by humans. Furthermore, 

goodness-of-fit test results showed that tweets with a position 

were identified by human beings. Results also showed that the 

multinomial distributions by prefecture differ for learning data 

tweets. 

Table 1-Human annotated data summary: goodness of fit 

(GoF) test. We tested humans’ correctly annotated data with 

overall geo-tagged tweets as a multinomial distribution at the 

prefecture level. 

Level Ratio (%) Precision (%) 

Annotated 10.4 87.8 

Unknown 89.6 - 

Prefecture 9.1 89.7 

Region 1.3 74.6 

 

Methods 

Word-Specific Gaussian Mixture Model 

In an existing approach [16], the GMM has been used for 

geographic density estimation of geo-tagged tweets. Each tweet 

is converted to n-gram features consisting of the number of n-

gram occurrences in a corpus and geographic coordinates 

(longitude and latitude) of n-grams. GMM applied for each n-

gram wj is defined as word- specific GMM as 

 

1) ������� = 	∑ 
���(�|��� , ∑��)
�
���  

 

here � ∈ 	ℝ� represents geographic coordinates (latitude and 

longtude), wj represents the word indexed in j, πkj is the weight 

as the word wj is assigned to the k-th mixture component, and 

�(�|��� , ∑��) is a multi variate Gaussian distribution with 

mean ���and covariance ∑��. 

After estimating GMM for each n-gram, the weighted sum of 

word-specific GMM is combined as  

 

2) ��|�� = 	∑ 
�`�
��� ������� 

 

Where x = {w1 … wj} represents the words in a tweet, 
�` is the 

weight of the GMM on the word wj. 

For the formula, it is important to ascertain the weight of each 

GMM πj(wj). To date, most methods calibrate parameters for 

improving the prediction accuracy, but they merely consider 

the geo-location identifiability of n-grams to adjust weights. 

These approaches also merely consider whether a specific word 

is included or not. They do not consider the meanings of the 

respective tweets. 

In contrast, this study applies Gaussian Mixture Regression, 

which allows expansion of word-specific GMM further by 

ascertaining weights of tweet GMM automatically from joint 

probability distributions of a tweet and geo-location. 

Consequently, we can impose any kind of feature to our model. 

Feature-Dependent Density Estimation 

To represent our location density model, we use Gaussian 

Mixture Regression (GMR) [18], which is formalized by a 

conditional distribution of a jointly estimated Gaussian Mixture 

Model (GMM). 

Our model need not prepare a specific evaluation index for 

feature-dependent weight estimation. We can derive the weight 

of two-dimensional GMM from jointly estimated GMM. 

Therefore, we designate our model as feature-dependent. 

Depending on given feature vectors, the feature of GMR varies 

the mixture of weights and each component of Gaussian 

location and variances. Figure 1 presents examples of 

conditional geographic density of two tweets. 

To obtain the GMR results, we first estimate the joint 

probability p(y,x) of p-dimensional tweet representation and 

two-dimensional Gaussian Mixture Model [17]. Then 

conditional distribution p(y|x) of geo-location y for a given 

tweet x can be derived analytically from the joint distribution 

p(x,y) as follows:  
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The key point of GMR is that the weights of mixture parameters 

are changed flexibly depending on the feature vector x. 

Consequently, the tweet’s vector representation defines the two-

dimensional geographical probability density functions p(y|x). 

GMR is useful for any feature as p-dimensional vectors. 

As described in the paper, we use a continuous word vector 

learned by fasttext [19] to compress the dimensions of our tweet 

dataset. We compose a vector representation of tweet by 

averaging all the word vectors in tweets. 

Results 

To compare our model with human inference, we evaluated our 

model through several perspectives. 

First, we calculated the distance between our model density and 

the origin of tweets in a different identifiability dataset such as 

the prefecture level or region level. We choose the mode value 

of the estimated distribution as the estimated location and we 

got the city name from estimated geographic coordinates using 

Google Map API. 

As a baseline method, we used the regularized linear regression 

method, Elastic-Net [20]. We optimized the baseline model 

using the validation set. 

Our first results are presented in Table 2 and 3. Although our 

model performs worse than the baseline model, our model 

monotonically improves prediction performance through human 

inference improvement. 

Second, we comprehensively investigated cases in which our 

model revealed a result similar to a human's inference, when it 

failed to estimate origin locations, and when it outperforms 

human inference. Our characteristic examples are presented in 
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Figure 2. As the first example, Figure 2(a), shows the human 

label as coincident with the origin of tweets, in such cases, our 

model easily estimates the origin of locations. In the second 

example, our model has failed estimation with high accuracy. 

Our model density is widely spread. However, humans are also 

puzzled when specifying the location and labeled the region 

level. The last example reveals the superiority of density- based 

estimation. In the tweet, a user stated “Yokohama”, which is a 

city of Kanagawa prefecture. Therefore, the human annotated 

Kanagawa prefecture for this tweet. 

However, the speaker makes remarks at the boundary of the 

prefecture; the speech position is actually within Chiba 

prefecture. In a conventional classification approach, we 

misclassified this tweet, but it is apparent that our method 

estimates the distribution across both prefectures. 

Our model incorporates the uncertainty of the user location 

estimated from tweet contents. We ascertained that a density- 

based approach is more reasonable to cover a wider range of 

class such as a prefecture or region than classification 

approaches for a difficult tweet to identify the geolocation. To 

improve the model validity further, feature vectors have an 

important responsibility. Although this research only employs 

the textual information for geolocation estimation, the many 

previous researches empower the geolocation performance via 

classification. We will further explore which feature has good 

effects for estimating the tweet’s uncertainty. 

In addition, we will apply our model for non-geotagged 

infectious diseases related tweets such as Influenza [2] to 

explore the regional trends of the infectious diseases. 

Conclusion 

In this study, we demonstrated that GMR provides a new 

perspective for estimation of the tweet posting origin. We 

provide simpler and more reasonable approaches to estimate 

the geographic region of a tweet. Although an earlier study [16] 

estimated GMM in each word independently, our method 

handles tweet contents in a vector representation. We examine 

the relation between human interpretability and geographic 

biases of geo-tagged tweets. 

Table 2-Mean distances: Region data include Prefecture data 

Level GMR (km) Elastic-Net (km) 

Prefecture 251 271 

Region 242 268 

Overall 278 272 

 

Table 3-Median distances: Region data include Prefecture data 

Level GMR (km) Elastic-Net (km) 

Prefecture 154 181 

Region 134 181 

Overall 214 191 

 

 

Figure 2-Characteristic estimated density examples. 
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