
From Bench to Bedside: A View on Bioinformatics Pipelines

Blanca Floresa, Dirk Hoseb, Anja Seckingerb, Petra Knaupa, Matthias Ganzingera

a Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg,Germany,
b Department of Internal Medicine, Heidelberg University Hospital, Heidelberg, Germany

Abstract

Although sequencing technology has become widely available
in recent years, the steps in bioinformatics pipelines are time-
consuming and barely standardized. New tools to improve
individual steps in a pipeline are frequently published and
configurations can be quickly adapted to use new versions. We
performed case studies with a representative set of pipeline
management tools using the GEP-R pipeline, and a qualitative
study of different software packages covering relevant classes
of software tools. We use a software toolset of R environment,
Docker, KNIME, and BPEL to review our first aim of
technical and organizational challenges. We propose
snapshotting, documentation management, and a hybrid
approach for our second aim of approaches to reproducibility.
In order to have fully reproducible results derived from raw
data, we think that it is necessary to archive biomedical
analysis pipelines and their necessary software components.
Keywords:

Medical Informatics; Computational Biology; Software

Introduction

Sequencing and analysis of genomic data have become valua-
ble technologies in both research and clinical settings. An ef-
fective and rapid analysis of data can support the identification
of target genes and decision-making on diagnosis and treat-
ment options [1]. Sequencing technology has become relative-
ly cheap and widely available. In contrast, the steps of bioin-
formatics analysis following sequencing are still time-
consuming and barely standardized. Typically, bioinformatics
facilities develop and maintain their own chain of analytical
steps, also known as an analytical pipeline. A variety of com-
puter programs are available for each step. They have specific
characteristics that make them more or less suitable for an
analysis target. Each program used in each analytical step
generates output data that can be used as input for the next
program in the analytical pipeline. Since new tools for im-
proving individual steps of a pipeline are frequently published,
pipeline configurations can be quickly adapted to make use of
the new versions.
Management of bioinformatics pipelines is facilitated by tools
used for tasks such as the execution of serial and parallel steps
and handling complex dependencies, varied software, data file
types, and fixed and user-defined parameters [2]. Selection of
tools in the pipeline depends on user requirement and imple-
mentation setting. Unfortunately, newer versions of packages
can lead to unintended side effects in the analytical pipeline
that may cause different results in calculations. Even small
changes, like handling decimal places differently, can eventu-
ally lead to changes in classification of data or decision-
making.

The problem of changing pipeline components is intensified
by modular software packages such as the statistical software
R [3]. Typically, a certain function is encapsulated into a
package. However, packages often make use of functions pro-
vided by other packages, with each package having its own
update cycle. As a consequence, complex packages have a
complex dependency tree and are common in bioinformatics.
The differences in the pipeline implementation and frequent
changes in tools and their versions affect the system´s stabil-
ity, reproducibility, and validation. For example, a change in
risk-classification software as mentioned above might lead to
attribution to a different prognostic group for a patient. In such
a case, problems occur when results are compared to those of
other patients classified on different versions or if procedures
are repeated on different versions. Consequently, technical
and organizational steps are necessary to manage documenta-
tion, ensure version control, and validate pipeline configura-
tions in a clinical setting.
Standardization and validation of the software tools are strong
requirements for pipelines used in clinical implementation [4].
Thus, we propose two approaches for achieving reproducible
pipelines: Snapshotting complete configurations, and docu-
menting pipelines in detail.

Snapshotting

Taking a snapshot of a pipeline can be compared to freezing
the whole runtime environment including all software compo-
nents as they are installed at the time of taking the snapshot.
The snapshot can be conserved for later reactivation or be
transferred to another environment to replicate the pipeline.
The environment can be built in a very interactive way, which
makes it easy to implement even complex dependencies with
heterogeneous version requirements. For example, the latest
version of a certain package might depend on an older version
of another package and hence it may not be possible to simply
use the latest versions of all packages.

Pipeline documentation

Another way to conserve the pipeline configuration is to doc-
ument the precise pipeline configuration. Preferably, this is
done in a machine-readable way, so the pipeline can be rebuilt
automatically. This approach relies on the software manage-
ment capabilities of the programs used in the pipeline: they
should support unattended installation methods in order to
install the correct programs reliably. For modular software
like R, functions have to be provided to extract the list of in-
stalled packages with versions and automatically reinstall the
software from such a list.
A bioinformatics pipeline has been developed for a project
called “clinically applicable, omics-based assessment of sur-
vival, side effects, and targets in multiple myeloma
(CLIOMMICS)” during the research stage. It has further ma-

MEDINFO 2017: Precision Healthcare through Informatics
A.V. Gundlapalli et al. (Eds.)
© 2017 International Medical Informatics Association (IMIA) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-830-3-375

375

tured for use in clinical routine care. Multiple myeloma is a
malignant disease characterized by molecular heterogeneity
that can be assessed by gene expression profiling (GEP). The
GEP-R is a reporting tool developed using R [3] and Biocon-
ductor [5] and generates a medical letter summarizing the
scores derived from the GEP analysis. Thus, it allows the au-
tomated interpretation of Affymetrix gene expression microar-
ray profiles by using a bioinformatics pipeline. It aims to pro-
vide quality controlled, validated, and clinically digestible
information that includes molecular classification, risk stratifi-
cation, and assessment of target gene expression [2]. The re-
sult of the GEP-R bioinformatics pipeline is a report in the
form of a letter to the physician in charge of patient treatment.
The aim of this paper is to describe the technical and organiza-
tional challenges of handling changes for bioinformatics pipe-
lines, using the GEP-R project as an example. In addition, we
propose two approaches to improve stability and reproducibil-
ity of the pipeline, as well as validity of its tools.

Methods

To investigate the possibilities for increasing reproducibility
of bioinformatics pipelines we performed case studies with a
representative set of pipeline management tools. We selected
the software tools with the intention to cover the reproducibil-
ity strategies of pipeline documentation and pipeline snapshot.
We do not aim to provide a comprehensive overview of pipe-
line management software found in Leipzig, and Curcin et al.
[6, 7]; instead, we performed a qualitative study of different
software packages covering relevant classes of software tools.
These classes are:

� Package-based analysis software
� Virtualization software
� Graphical pipeline management software
� Document-oriented pipeline management software

We used the GEP-R pipeline as a test case.

GEP-R pipeline

The biomedical objectives of this pipeline are described in the
original publication by Meissner et al. [2]. GEP-R is a typical
pipeline for the analysis of DNA microarray data from a tech-
nical perspective. Specifically, .CEL files derived from Affy-
metrix U133 Plus 2.0 DNA microarrays are analyzed to classi-
fy stage, prognosis, and treatment options for patients with
multiple myeloma. The pipeline consists of a series of Bio-
conductor functions to preprocess the raw microarray data and
subsequently calculate relevant scores. In addition, quality
control indicators are calculated. All results are combined and
visualized in a format that can easily be interpreted by physi-
cians by using the Business Intelligence and Reporting Tools
(BIRT) framework [8]. The pipeline uses standard packages
from R and Bioconductor repositories, and in addition, a mod-
ified non-standard version of a specific package is required. A
workflow representation of the pipeline components is shown
in Figure 1.

Figure 1- GEP-R pipeline

Software reviewed

Since R (often in combination with Bioconductor) is a very
common pipeline component and at the same time a very
complex system with complex internal dependencies, we con-
sider it as a mandatory element of our test cases. Microsoft R
repository is an approach for installing historic versions of R
packages. It is possible to choose any date beginning 2014-09-
17 within this repository and re-install a consistent R system
based on package versions that were current on a specific date.
We chose KNIME Server version 4.3.2 [9] for a graphical
pipeline management system for our test case. This tool has
capabilities to interact with R and other external tools. The
pipeline is manipulated as workflows via a graphical user in-
terface. Workflows can be versioned and stored in a central
repository.
We used Docker as a generic tool for preserving specific con-
figurations of dependent software. With Docker, configura-
tions can also be versioned and stored in repositories. In con-
trast to a pipeline management tool like KNIME, Docker can-
not be used to provide a workflow by itself.
Finally, we investigated a document-oriented workflow man-
agement approach. BPEL can be used to design a workflow
within the pipeline by describing its components with XML
and Web Services. Changes in the pipeline can be tracked
with version control and provide support for documentation
management.
We performed our case studies on the basis of the bioinfor-
matics pipeline established for the GEP-R report [2].

Results

The results are structured according to the research aims of
our study. First, we describe the results for the evaluation of
technical and organizational challenges. Second, we show our
approaches for achieving reproducible pipelines by combining
appropriate software components.

Aim 1: Technical and organizational challenges

R environment

R is a statistical software package that is very popular in bio-
medical research. However, its full scope cannot be leveraged
by the monolithic core software, but relies on a huge amount
of additional packages. R packages are typically developed by
independent programmers and can be shared via the CRAN

B. Flores et al. / From Bench to Bedside: A View on Bioinformatics Pipelines376

network. As a result, release cycles of packages differ greatly
and are typically not synchronized with the release cycle of
core R. Since the behavior of packages can change during
updates without notice, a newer version might break the pipe-
line.
The challenge of changing packages is attenuated to some
extent by the R package checkpoint. This package was devel-
oped by Microsoft and allows rebuilding a consistent R envi-
ronment using the Microsoft R Application Network (MRAN)
repository. Unfortunately, it is not always the case that all
packages used for a bioinformatics pipeline are at their current
versions, since individual packages might have been added
during the development process without updating the remain-
ing packages.
In addition, bioinformatics applications are typically based on
the Bioconductor tools. Bioconductor consists of more than
1200 R packages provided via its own repository system Bioc.
Since Bioc is not included into the MRAN snapshots, it can be
challenging if older versions of Bioconductor packages have
to be installed manually.
Docker

Docker is an open source virtualization software that is in-
stalled on top of a variety of computer operating systems. It
aims to virtualize individual applications in contrast to com-
mon virtualization approaches that work on complete comput-
ers. Docker provides mechanisms for easily moving the virtu-
alized application (VA) between physical computers. The con-
figuration of the VA can be versioned using the built-in snap-
shotting tool.
We successfully configured the complete R including Biocon-
ductor and custom R packages inside a Docker container. This
container can be copied to any computer that is intended for
running our pipeline. Since the VA includes all required pack-
ages, we ensure consistent pipeline results across all instances.
The integrity of the container is verified by comparing check-
sums of the VA’s snapshot.
Graphical pipeline management system (KNIME)

KNIME is a general-purpose data analytics tool that provides
a user interface for preparing a specific pipeline by graphically
combining predefined components called nodes. For many
analytical steps that typically occur in bioinformatics pipe-
lines, nodes are shipped with KNIME or can be installed from
an additional repository. However, not all specialized func-
tions of Bioconductor are natively available in KNIME. Ac-
cess to Bioconductor functions is available via KNIME’s spe-
cial R-nodes. These nodes are used for seamless integration of
R-programs into KNIME workflows. Thus, data can be pre-
processed in KNIME and R functions can be invoked as nec-
essary within a workflow. The KNIME Server that we used
for this test includes repository for storing and versioning
pipeline configurations.
Document oriented pipeline management (BPEL)

The Business Process Execution Language for Web Services
known as BPEL [10] is a process execution language stand-
ardized by OASIS. It allows the design of workflows using
Web Services and represents data with XML specifications.
Workflows can be linked and invoked by other Web Services,
while inputs and outputs are assigned to variables to store da-
ta. Tools and technologies can be developed using Web Ser-
vices to increase the level of automation in a process. Control
structures used to manage tasks use either constructs that im-
plement conditional branching and looping or activity con-
tainers to schedule sequential or parallel tasks. The capabili-
ties of BPEL can be used for documentation management by

describing the workflow of a pipeline with XML and tracking
changes with its support for version control.
The GEP-R pipeline components can be described by express-
ing the exchanged data between the analytical steps as XML
forms and by defining the order in which the Web Services are
invoked. The steps in a process are known as activities and
different methods can be used to manipulate data in the pipe-
line, such as invoking services, initializing variables, assigning
values, and performing calculations. These can be combined
into algorithms to perform complex processes. Changes in the
pipeline can evolve and different versions can be deployed
depending on the specific needs by using version control.
Support for flexibility and adaptability to changes mitigate
technical and organizational challenges and also simplify the
process of documentation management.

Aim 2: Approaches for reproducibility

Snapshotting

Snapshotting seems to be the approach that is easier to imple-
ment since it is usually not disruptive to established develop-
ment and implementation procedures. The granularity of scope
that is covered by a snapshot depends on the software tools
that are used. One approach is to cover complex components
like R with Bioconductor. We established a Docker container
that contained all specific configurations for our GEP-R pipe-
line. Since we were able to use the common interactive mode
of installation, setting up the image for this container was rela-
tively easy. Since the installation of packages is not limited to
repositories, it was possible to compile and install a specifical-
ly modified R package into the container. When problems
occurred during the installation process, it was possible to fix
them without reinstalling the container as a whole. Since the
latest snapshot covers any changes that were made to the con-
tainer, it is hard to forget to document modifications as long as
the snapshot is generated. Docker supports the development
process by providing a versioning system that allows for mul-
tiple versions and even forks of images. Containers can be
moved or copied to other computer systems or even organiza-
tions in order to reproduce a specific pipeline.
While it is easy to manage pipelines as a whole using snap-
shots, it can be quite complex for users to understand what is
happening inside such a snapshot. For understanding the pro-
cess, it is disadvantageous that the generation of the snapshot
was done in an interactive way without enforcing to log all
steps and programs that were involved. Essentially, a snapshot
represents a black box with a behavior that can be reproduced
very well but that can be complex to comprehend.
Documentation management

Documenting all pipeline steps and components leads to a
description of the pipeline that makes it easier to understand
its functionality. Placing the individual steps of a pipeline into
a process description—for example using BPEL—can be
achieved with reasonable effort. The situation with complex
components or subsystems like R is more problematic. While
it is possible to extract a list of all packages installed including
the respective version, this list cannot be easily used for in-
stalling a new instance of R that exactly duplicates the first
installation. Typically, only the latest versions available in the
corresponding repositories of R and Bioconductor are used.
For the installation of custom versions of R packages, individ-
ual installation procedures are required that go beyond docu-
menting only package name and version.
For a fully automatic replication of a pipeline and its runtime
environment, it is further necessary to use a documentation
scheme that can be interpreted by a computer. Extensive test-
ing of the document is necessary in order to ensure a complete

B. Flores et al. / From Bench to Bedside: A View on Bioinformatics Pipelines 377

and error-free system. For each test, the whole pipeline envi-
ronment has to be rebuilt from scratch. The whole pipeline
development process has to be adapted to the documentation
approach as a result.
Hybrid approach

We also analyzed a hybrid approach combining snapshotting
and pipeline documentation for our tests based on the GEP-R
pipeline. We implemented a Docker container only for the
specific R environment in this case. The pipeline itself was
managed and documented using the KNIME Server. The func-
tional steps of the pipeline can easily be followed in the graph-
ical notation with this approach. The black-box-effect of the
Docker container is less significant since it is clear which spe-
cific functional step is called in the R environment.

Discussion

We assessed software tools and two different strategies for the
documentation and archival of bioinformatics pipelines in
order to facilitate reproducibility in our study. There are sev-
eral factors that may influence the quality of bioinformatics
pipelines: availability of a variety of tools for different steps,
ability to handle changes in user requirements or tool versions.
These factors can cause side effects such as small differences
in results, but may have bigger impacts in terms of classifica-
tions and decision-making.
We considered three characteristics that are important for bio-
informatics pipelines: stability, reproducibility, and ability to
validate tools and versions. Changes in requirements and con-
figurations may occur due to different reasons, such as fre-
quent updates of tools, availability of new tools, and changes
in requirements. A proper documentation strategy and version
tracking allow smoother transitions and facilitate changes
without disrupting the analytical steps or results.
We described two approaches for achieving these characteris-
tics, each having its advantages and disadvantages. Snapshot-
ting the whole pipeline is relatively easy to implement using
virtualization technologies like Docker. However, it is not
easy to follow the pipeline’s functionality. It is also not known
for how long container runtime environment will be available.
Documentation-based approaches provide pipelines that can
easily be understood when looking at the whole process.
However, they are more complex to implement. On the com-
ponent level, they also face the problem that specific software
components might not be available in the future.
A compromise of these two approaches is to document the
high-level pipeline using tools like KNIME or BPEL. Howev-
er, we suggest to use methods like Docker for individual com-
ponents to conserve possible complex configurations for fu-
ture use.
Research has been done to define formats for data expected to
be used in future. More research is necessary to ensure the
long-term availability of execution environments for the con-
served pipelines.

Conclusion

Archiving raw data is considered good clinical practice as well
as good research practice. However, in order for results de-
rived from such data to be fully reproducible, it is necessary to
archive biomedical analysis pipelines along with data as well
as consider important requirements such as standardization
and validation of all necessary software components.

Acknowledgements

CLIOMMICS is funded by the German Ministry of Education
and Research within the e:Med initiative.
Grant id: 01ZX1609A.

References

[1] A. Valencia, M. Hidalgo, Getting personalized cancer genome analysis
into the clinic: the challenges in bioinformatics. Genome Med 4 (2012),
61

[2] T. Meissner, A. Seckinger, T. Reme, T. Hielscher, T. Mohler, K. Neben
et al., Gene expression profiling in multiple myeloma—reporting of
entities, risk, and targets in clinical routine. Clin Cancer Res 17 (2011),
7240–7247

[3] R Development Core Team, R: A Language and Environment for
Statistical Computing. Vienna, Austria, 2008

[4] ISO/IEC, Health software –Part 1: General requirements for product
safety. Geneva, IEC, 2016. (vol 35.240.80) 2016. Available from:
URL:http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detai
l.htm?csnumber=59543 [cited 2016 Dec 16]

[5] R.C. Gentleman, V.J. Carey, D.M. Bates, B. Bolstad, M. Dettling, S.
Dudoit et al., Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol 5 (2004), R80

[6] J. Leipzig, A review of bioinformatic pipeline frameworks. Brief
Bioinform (2016)

[7] V. Curcin, M. Ghanem, Scientific workflow systems - can one size fit
all? In: 2008 Cairo International Biomedical Engineering Conference
(CIBEC). p. 1–9

[8] D. Peh, N. Hague, J. Tatchell, BIRT: A field guide. - Includes index. 3rd

ed., Addison-Wesley. Upper Saddle River, N.J., 2011. (Eclipse series)
[9] M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl et

al., KNIME - the Konstanz information miner. SIGKDD Explor 11
(2009), 26

[10] Business Process Execution Language for Web Services., OASIS, 2007.
Available from: URL:http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html

Address for correspondence
Matthias Ganzinger
Institute of Medical Biometry and Informatics
Im Neuenheimer Feld 130.3
69120 Heidelberg
Germany
Email: Matthias.ganzinger@med.uni-heidelberg.de

B. Flores et al. / From Bench to Bedside: A View on Bioinformatics Pipelines378

	Abstract
	Keywords:

	Introduction
	Snapshotting
	Pipeline documentation

	Methods
	GEP-R pipeline
	Software reviewed

	Results
	Aim 1: Technical and organizational challenges
	R environment
	Docker
	Graphical pipeline management system (KNIME)
	Document oriented pipeline management (BPEL)

	Aim 2: Approaches for reproducibility
	Snapshotting
	Documentation management
	Hybrid approach

	Discussion
	Conclusion
	Acknowledgements
	References
	Address for correspondence

