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Abstract

Drug and supplement interactions (DSIs) have drawn
widespread attention due to their potential to affect 
therapeutic response and adverse event risk. Electronic health 
records provide a valuable source where the signals of DSIs 
can be identified and characterized. We detected signals of 
interactions between warfarin and seven dietary supplements,
viz., alfalfa, garlic, ginger, ginkgo, ginseng, St. John’s Wort, 
and Vitamin E by analyzing structured clinical data and 
unstructured clinical notes from the University of Minnesota 
Clinical Data Repository. A machine learning-based natural 
language processing module was further developed to classify 
supplement use status and applied to filter out irrelevant 
clinical notes. Cox proportional hazards models were fitted, 
controlling for a set of confounding factors: age, gender, and 
Charlson Index of Comorbidity. There was a statistically 
significant association of warfarin concurrently used with 
supplements which can potentially increase the risk of adverse 
events, such as gastrointestinal bleeding. 
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Introduction

Drug and supplement interactions (DSIs) have drawn wide-
spread attention in recent years due to the increased preva-
lence of dietary supplements worldwide. Patients often take 
prescribed medications along with dietary supplements to 
boost the immune system or to mitigate the side effects of a
particular treatment. A major safety concern is the potential
for dangerous adverse events caused by DSIs, particularly for 
drugs with narrow therapeutic indexes, such as warfarin. In-
creasing our knowledge base about DSIs will assist pharma-
cists and healthcare providers to provide guidance to patients 
on the safety and efficacy of the concomitant use of prescribed 
medications and dietary supplements, especially for the elder-
ly, who have increased vulnerability to DSIs. Given the diffi-
culty of testing DSIs in human populations, information on
DSIs mostly comes from in vitro, animal research, or case 
reports [1]. Unfortunately, this information is under-reported 
and can be inconsistent. Also, clinical trials for drug approval
may not reveal DSIs since supplements and drug-drug interac-
tions often require large patient populations for adequate study 
power, especially with rare events. Our prior study identified 
several known and potential DSIs by mining 23 million bio-
medical literature abstracts (MEDLINE) [2]. Although the 
biomedical literature may help us to infer DSI knowledge and 
potential hypotheses for novel DSIs, we may also leverage 

electronic health record (EHR) systems to complement DSI 
understanding and validate DSI hypotheses. EHRs offer a rich 
source of patient information since they serve as the primary 
patient care documentation platform for clinical care delivery. 
Some EHR data of interest to study DSIs include medication
information, problem lists, laboratory data, and clinical notes.
Warfarin, as one of the most commonly prescribed anticoagu-
lants, is widely used to treat and prevent thromboembolic 
events associated with atrial fibrillation, heart valve replace-
ment, myocardial infarction and existing thromboembolic dis-
ease. However, warfarin is often involved in interactions with 
supplements because its metabolism involves multiple active 
metabolic pathways [3]. Natural products such as garlic, gin-
ger and ginkgo are among the most common supplements im-
plicated in DSIs with warfarin. Garlic has the side effect of 
platelet inhibition, which can increase the risk of bleeding 
when used with anticoagulant drugs [4]. Ginger can inhibit 
thromboxane synthetase and therefore lead to prolonged 
bleeding times [4]. Ginkgo will increase the International 
Normalized Ratio (INR) with warfarin, and ginseng might 
reduce the effect of warfarin [4]. Vitamin E can interact with 
warfarin due to blood thinning effects, especially in Vitamin K 
deficient individuals [5]. According to the Natural Medicines 
Comprehensive Database (NMCD) [6], warfarin also has sig-
nificant interactions with alfalfa, grapefruit, and St. John’s 
Wort.
In our previous study, we found that clinical notes contain 
some supplement mentions that do not exist in the medication 
list [7]. Much information about supplement use is embedded
in clinical notes, and thus in this study we demonstrate that 
informatics techniques, especially natural language processing 
(NLP) methods, are effective in extracting supplement use 
status information from clinical notes. Specifically, we con-
ducted survival analysis to test the significance of the concom-
itant use of warfarin and supplements associated with the ap-
pearance of adverse events based on the EHR data from Uni-
versity of Minnesota Clinical Data Repository (UMN-CDR). 
We focused our assessment on the adverse interactions of war-
farin with seven dietary supplements: alfalfa, garlic, ginger, 
ginkgo, ginseng, Vitamin E, and St. John’s Wort, with poten-
tial interactions indicated in the NMCD knowledge base. Ad-
verse events were limited to embolic stroke and thromboem-
bolism, which are defined as warfarin treatment failure events. 
In addition, bleeding (including GI bleeding) and the subset of 
patients with GI bleeding were evaluated and defined as side 
effects of warfarin in the context of this study.
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Background

Warfarin potential interactions

Warfarin is a medication with a long history of clinical use 
due to its effect on the human coagulation system, but also as 
a poisoning agent/rodenticide due to these same 
pharmacologic characteristics. This dichotomy is carefully 
balanced clinically by having regular testing of the therapeutic 
response with the use of warfarin. Patient monitoring is
managed by assessing blood coagulation with prothrombin 
times and INR testing which provide standard clotting 
measures. The testing is typically done on a monthly basis or 
even more frequently with substantial dosage changes or use 
of medications associated with drug-drug interactions. This 
intensive follow-up therapy helps to reduce the clinical risk of 
excess therapeutic effect (anticoagulation) which can result in 
bleeding. In addition, the monitoring allows dosages to be 
constantly adjusted to maintain adequate levels of 
anticoagulation to prevent thromboembolic events. Given this 
frequent follow-up by patients, the shifts in levels of 
anticoagulation are typically noticed before clinically 
significant events occur. However, if patients initiate new 
medications or supplements shortly after regular testing, they 
may be at risk for several weeks before routine testing can 
detect drug responses outside of the usual therapeutic range.

BioMedICUS and NLP-PIER

Both BioMedICUS and NLP-PIER are tools developed by the 
NLP/Information Extraction group at the UMN. BioMedICUS 
(BioMedical Information Collection and Understanding 
System) [8] is an open-source NLP system based on the 
Unstructured Information Management Architecture –
Asynchronous Scaleout (UIMA-AS) architecture [9]
specializing in NLP-related information extraction and 
understanding of clinical notes. NLP-PIER (Patient 
Information Extraction for Researchers) is a web-based search 
engine for clinical notes from the EHR [10]. Clinical notes in 
the CDR are run through a BioMedICUS NLP pipeline and 
indexed for use in NLP-PIER. BioMedICUS identifies UMLS 
Metathesaurus concepts (concept unique identifiers, or CUIs) 
from lexical variants expressed in the notes, and whether the 
identified concepts were used in a negated context. These 
negation-qualified CUIs are added to a set of 15 patient-
related and encounter-related note attributes from the CDR, 
including five attributes from the HL7-LOINC document 
ontology [11]. Attributes and CUIs are stored in an 
Elasticsearch cluster along with the clinical note itself, which 
is run through an Elasticsearch snowball analyzer when it is 
indexed. This setup enables full text searches to be run on 
research-related note sets within NLP-PIER. Search terms can 
be expanded by specifying UMLS CUIs as part of the search 
query and results can be filtered using the attributes.

Methods

The method of this study consists of five steps: 1) data 
collection: search for patients taking warfarin and collect 
information about patients’ demographics, warfarin usage, 
diagnosis and clinical notes; 2) NLP for supplement
information extraction: apply NLP module to extract 
information about supplement use in clinical notes; 3) 
structured data query: query medication table for supplement
use and diagnosis table for adverse events; 4) data 
combination: combine information from structured and 
unstructured data to generate a comprehensive data set for 
each patient; 5) statistical analysis: conduct survival analysis 

to detect the significance of adverse events caused by 
concurrent use of warfarin and supplements.

Data collection

Patient cohort data in the Epic EHR were extracted from the 
UMN-CDR hosted by the Academic Health Center-
Information Services (AHC-IS) exchange platform and 
supported through the Clinical Translational Science Institute 
(CTSI) at the UMN. The data in the CDR comes from the 
EHR of more than 2 million patients who sought health 
services at eight hospitals and over 40 clinics. Data are 
available for hospital visits starting from 2011. IRB approval 
was obtained for accessing the clinical notes.
Patients who have warfarin prescriptions from 2011 to 
September 2015 were included by using both generic name 
and brand names (i.e., Coumadin, Panwarfin, Sofarin) of 
warfarin. Patients with medication records showing at least 
one warfarin prescription and complete information about the 
warfarin start date and end date were included in this study. 
The data from a total of 48,426 patients were stored in AHC-
IS data shelter, which included patients’ demographic 
information, diagnosis, and medications. Clinical
comorbidities were calculated using the Charlson Index of 
Comorbidity. Their corresponding clinical notes were 
processed by BioMedICUS and indexed by NLP-PIER for 
further information extraction.

NLP for supplement information extraction

Since much of the information about supplement use was 
embedded in clinical notes, we retrieved the related clinical 
notes using PIER for further information extraction. Selected 
supplements and all their lexical variants were used for 
retrieving clinical notes. For instance, “ginkgo”, “Vitamin E”
and “St. John’s Wort” have their lexical variants including 
“gingko”, “ginko” and “ginkoba”, “Vit E”, “St. Johns Wort”, 
“St. John Wort”, “St John’s wort”, “St Johns wort”, “St John 
Wort”, respectively. However, we found instances of negative 
mentions (such as discontinuation of supplements) of 
supplements in the notes, such as “she may try ginkgo biloba 
for her memory issues” or “Denies using St John’s Wort”. 
Therefore, we applied a NLP module to classify the use status 
of the supplements, especially the active ones, such as 
“started” and “continuing”, and also filtered the irrelevant 
clinical notes, such as “discontinuing” and negative mentions.
In our prior study [12], we used machine learning-based 
methods to automatically classify the use status of the 
supplements into four categories (Continuing (C), 
Discontinued (D), Started (S), Unclassified (U)). A total of 
1,300 sentences on 25 most commonly consumed supplements 
were randomly selected and annotated. The training set 
consisting of 1000 sentences of 10 supplements was used to 
select the optimal algorithm with the identified feature sets. 
The test set included 300 sentences on the remaining 15 
supplements. We trained four algorithms with seven different 
feature sets in the study. The best model (i.e., Support Vector 
Machine (SVM) with the feature set of unigram, bigram and 
indicator words within window size of four tokens on both 
sides of supplement mention) achieved F-measure of 0.906, 
0.913, 0.914, 0.715 for status C, D, S, U on the test set, 
respectively. We further applied the trained SVM model on 
the notes retrieved in this study. We only consider the 
“Continuing” and “Started” categories since they are the 
active status for supplement use. “Discontinued” category may 
hold important information about the past use of supplements, 
however, the start date of the supplements remains unclear, 
therefore, “Discontinued” was considered negative case in this 
study.
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Structured data query

Supplements and warfarin: Both structured and unstructured 
data were used in the search for supplement use. Since some 
supplement products were also included in the medication 
tables, we queried them using the common names and the 
lexical variants of supplements as above. Warfarin
information was also retrieved from the medication table.
Adverse events: A list of ICD9-CM codes (International 
Classification of Disease, Ninth Revision, Clinical 
Modification) was used to identify patients having adverse 
events, which included gastrointestinal (GI) bleeding, general 
bleeding (GI bleeding included), embolic stroke and 
thromboembolism (see Table 1).

Table 1– ICD-9 Codes for Adverse Events

Diagnosis ICD-9 Codes

GI bleeding 530.7, 530.82, 531.2, 531.4, 531.6, 
532.2, 532.4, 532.6, 533.2, 533.4, 533.6, 
534.2, 534.4, 534.6, 535.x1, 537.83, 
562.02, 562.03, 562.12, 562.13, 569.3,
578.x 

general bleeding 964.2, 964.5, E934.2, E934.5, 459.0, 
285.1, 286.59, 362.81, 596.7, 599.70, 
599.71, 719.1x, 782.7, 784.7, 784.8, 
786.30, 786.39, 423.0, 423.1, 423.9, 
568.81, 530.7, 530.82, 531.2, 531.4, 
531.6, 532.2, 532.4, 532.6, 533.2, 533.4, 
533.6, 534.2, 534.4, 534.6, 535.x1, 
537.83, 562.02, 562.03, 562.12, 562.13, 
569.3,e 578.x, 430, 431

embolic stroke 346.6x, 433.01, 433.11, 433.21, 433.31, 
433.81, 433.91, 434, 434.01, 434.1, 
434.10, 434.11, 434.9, 434.90, 434.91, 
436

thromboembolism 451.1x, 453.4x, 453.5x, 453.8, 453.9, 
415.1x 

Data combination 

Structured and unstructured data were combined to generate a
comprehensive data set for each patient. Patients were further 
divided into two groups based on their use of seven 
supplements. The supplements-reported group include patients 
who have at least one prescription record showing that they 
take warfarin and at least one of the seven supplements 
concurrently. The warfarin-only group include patients taking 
warfarin only and do not have exposure to any of the seven 
supplements during the time period six months before the 
warfarin initiation to the first occurrence of an adverse event 
of interest based on the EHR data. We used the note date as 
the supplement’s start date if the start date was not specifically 
mentioned in the clinical notes and medication table. For 
example, “Pt has started taking ginseng” and “Patient has been 
taking garlic” indicate that the patient has already started 
taking the supplements before the visit; however, detailed 
information about the start date is unavailable in the notes. 
Additionally, it usually takes weeks for warfarin to 
demonstrate a stable therapeutic level. The initial titration 
phase may be a time of increased risk of adverse events until a 
stable warfarin dose is reached. To reduce the drug titration 
effect bias, the first 30 days of warfarin use were eliminated 
for both groups [13]. For the supplements-reported group, day 

1 was the first day when any of the supplements were first 
noted in the EHR after eliminating the first 30 days of
warfarin use. For the warfarin-only group, day 1 was actually 
the day 31 for the warfarin use.

Survival analysis

Cox proportional hazards models were fitted to compare the 
hazard of adverse events between two groups, controlling for a 
set of confounding factors including age, gender, and 
comorbidities. All the patients were followed for one year for 
the first occurrence of adverse events. Follow-up ended with 
the first adverse event, or the end of the warfarin therapy.
Kaplan-Meier survival curves were also plotted.

Results

A total of 41,257 patients were included in the study, among 
which 2,640 subjects were in the supplements-reported group 
who took warfarin and at least one of the seven supplements 
concurrently. The control group included 38,617 subjects in 
the warfarin-only exposures.
The number of patients taking each of the seven supplements 
were counted based on the information from both structured 
and unstructured data. The results in Table 2 indicate that the 
identification of supplement use was much larger with the use 
of the combination of structured and unstructured data 
approach, especially for garlic and ginger, since much of the
information about dietary supplements related to food such as 
“garlic bread” and “ginger tea” were detected by our NLP 
module.
The hazard ratio, 95% CI, and p-value for the four adverse 
events are listed in Table 3. The results show that the hazard 
ratio of the four adverse events in the supplements-reported 
group are statistically significant and higher in the supplement 
exposed patients when compared with the warfarin-only 
group. The results indicate taking warfarin concurrently with 
supplements is associated with side effects such as bleeding, 
or therapeutic failure events like embolic stroke.
The Kaplan-Meier survival curves for four adverse events 
were shown in Figure 1. The results of the log-rank test 
indicate the survival curves for the supplements-reported 
group and the warfarin-only group are significantly different 
(P<0.01) in GI bleeding, general bleeding, and embolic stroke, 
however, for thromboembolism, there is no significant
difference in the curves between the supplements-reported

Table 2– The Number of Patients with Mention of 
Supplements Use in Structured and Unstructured Data

Supplements Structured Structured and 
Unstructured

alfalfa 30 68

garlic 329 925

ginger 100 1296

ginkgo 141 276

ginseng 42 109

Vitamin E 2273 4145

St. John’s Wort 22 44
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Table 3– Multivariable Cox Proportional Hazards Regression 
for Adverse Events (supplements-reported group VS. 

warfarin-only group)

Adverse events HR (95% CI) p-value

GI Bleeding 1.30 (1.08, 1.57) 0.005

General Bleeding 1.20 (1.07, 1.34) 0.002

Embolic Stroke 1.27 (1.06, 1.51) 0.008

Thromboembolism 1.13 (1.02, 1.25) 0.021

group and warfarin-only group.

Discussion

The literature has shown there may be potential adverse 
interactions between warfarin and supplements, however, in 
many cases, the limited available data impedes the assessment 
of the potential risk associated with concurrent use. 
Additionally, the data is hard to detect in clinical trials due to 
limited sample sizes and high costs for the evaluations. 
Due to its blood thinning effect, patients on warfarin are 
warned to be careful taking other supplements, such as 
ginkgo, ginger, Vitamin E, which can potentially increase the 
risk of bleeding events. Our confirmation of these potential 
adverse interactions provides evidence to support the current 
clinical guidance and provides data to assess drug safety with 
DSIs. For example, alfalfa contains a large amount of Vitamin 
K, which can reduce the anticoagulant activity of warfarin
[14]. Alfalfa was part of the original research on Vitamin K 
metabolism and was one of the first substances on which 
Vitamin K was synthesized. This finding is consistent with the 
expected response with Vitamin K directly reversing the 
effects of warfarin. Taking St. John’s Wort induces 
cytochrome P450 2C19 which may clinically affect warfarin
[15]. Ginkgo also affects the CYP3AY path by inducing the 
enzyme which may affect the R-enantiomer of warfarin [16].
This study demonstrates the feasibility of using clinical data 
from EHR to detect the signals for adverse events associated 
with drug and supplement interactions. The results of the 
study as noted in the hazard ratio indicate a higher risk of 
adverse events and therapeutic failure well beyond typical 
screening triggers to assess the signal for potential adverse 
events. Additional assessment of the clinical cases will be 
needed to confirm the temporal and pharmacological patterns 
with the results to better assess the risk of exposure to 
supplements. However, from a medication safety perspective, 
the approach substantially reduces the assessment effort by 
patient safety officers or clinician managers to identify 
potential drug safety issues.
Though we used structured data for our outcomes assessment, 
our results provide support for the use of unstructured data to 
assess clinical exposures and outcomes. In addition, the 
combination of structured data (i.e., structured medication 
table) with unstructured data (i.e., clinical notes) in identifying
supplements use has shown that clinical notes contain valuable 
information related to supplements which can complement 
structured data for DSI detection in the EHR. It is noted from 
our study that very little information about supplements is 
stored in the medication table since dietary supplements are 
regulated as food and can be obtained over the counter without

            

Figure 1– Kaplan-Meier Curves for Adverse Events 

a prescription, consequently, much of the information about 
supplement consumption is documented in clinical notes 
during the medical encounter. Therefore, the combination of 
text information with a structured medication module is 
necessary for the supplements use identification, where NLP 
is essential for extracting supplements use related information 
from clinical notes. 
One limitation of the study is that for some patients, the actual 
start date of supplements is before the date of the clinical note 
because we found some patterns like ‘she has started ginger 
two months ago’, which could lead to misclassification of the 
exposure in the statistical analysis. The data has limitations on 
both the medication and supplement orders, which limits the 
ability to directly assess the association between exposures 
and clinical outcomes. Correlation of these results with other 
peripheral data sources such as retail data, if available, could 
help better identify the acquisition of supplements for 
presumed use by patients. Patient diaries, medication 
adherence apps and other sources could also be considered as 
part of usual care processes to better identify supplement use. 

Y. Fan et al. / Detecting Signals of Interactions Between Warfarin and Dietary Supplements in Electronic Health Records 373



The second limitation is that we only applied a limited set of 
common names of supplements in the search for notes related 
to supplement use which may have missed some supplement 
information. The recall of supplement  information might be 
increased when using more complete supplement terms.
Another limitation of the study is that we did not take into 
consideration the end date of the supplements since this 
information was often missing. Such information may also be 
contained in the clinical notes but requires additional analysis. 
Future work including the development of the NLP system to 
accurately extract temporal supplement information from the 
clinical notes could better assess the relationships of 
supplement exposures to medication use and clinical 
outcomes.

Conclusion

This study indicates that it is possible to use existing EHR
data to detect signals of DSIs. The current findings also 
demonstrate the feasibility of applying NLP methods to ex-
tract supplement usage information from clinical notes. Fur-
thermore, these methods can likely be extended to detect other 
potential drug and supplement interactions providing an im-
portant approach for post-market surveillance for DSI as well 
as drug-drug interactions.
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