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Abstract 

Precision medicine requires extremely large samples. 

Electronic health records (EHR) are thought to be a cost-

effective source of data for that purpose. Phenotyping 

algorithms help reduce classification errors, making EHR a 

more reliable source of information for research. Four 

algorithm development strategies for classifying patients 

according to their diabetes status (diabetics; non-diabetics; 

inconclusive) were tested (one codes-only algorithm; one 

boolean algorithm, four statistical learning algorithms and six 

stacked generalization meta-learners). The best performing 

algorithms within each strategy were tested on the validation 

set. The stacked generalization algorithm yielded the highest 

Kappa coefficient value in the validation set (0.95 95% CI 0.91, 

0.98). The implementation of these algorithms allows for the 

exploitation of data from thousands of patients accurately, 

greatly reducing the costs of contructing retrospective cohorts 

for research. 
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Introduction 

Recently, the progression towards precision medicine [1] has 

sought the development of large databases, allowing 

assessment of the impact of risk factors or treatments in specific 

subpopulations. This is usually a problem for classical cohorts, 

given the difficulty of enrollment and follow-up of a large 

enough number of patients [5]. Even more difficult is the 

situation for developing countries, given the usual lack of funds 

for local research [3]. 

Electronic health records (EHR) have been proposed as a 

solution to these two costs problems [10]. 

Phenotyping algorithms allow, through the combination of 

different variables extracted from the EHR, classifying patients 

according to their particular phenotype [8; 11]. Ideally, these 

algorithms must be validated and a metric should be estimated 

(accuracy, sensitivity and specificity, coefficient Kappa, F1 

score, positive and negative predictive values) of the ability to 

classify patients compared to a gold standard. This facilitates 

the classification of large numbers of patients without the 

intervention of a human. 

Boolean or rule-based algorithms are a common strategy for 

developing these algorithms. A different approach is the 

development of learners based on statistical learning, such as 

logistic regression or more recent methods such as decision 

trees, neural networks or support vector machines. The 

different families of algorithms explore the multidimensional 

space of data in different ways so it can be beneficial to 

combine them. One way to do this is through stacked 

generalization. This methodology, described by Wolpert [4] for 

classification problems and by Breiman [7] for regression 

problems, seeks to improve the predictive power of the 

individual algorithms by developing a meta-learner 

incorporating the predictions of all algorithms as input, 

combining them, and then issuing a final prediction. 

Our objective is to compare the performance of different 

classification strategies (only using standardized problems, 

rules-based algorithms, statistical learning algorithms and 

stacked generalization), for the categorization of patients 

according to their diabetic status (diabetics, not diabetics and 

inconclusive; diabetes of any type) using information extracted 

from EHR. 

Methods 

Study population 

Patient information was extracted from the EHR of the Hospital 

Italiano in Buenos Aires, Argentina. 

In order to have a training and a validation dataset, two samples 

of patients from different years (2005-2015; total n = 2463) 

were extracted. The only inclusion criterion was age (≥40 <80 

years old by 1/1/2005 and by 1/1/2015 for each sample). The 

sampling was carried out using simple randomization. The 

training set (2005) featured 1663 patients. The validation set 

(2015) represented roughly 33% of the total sample (n = 800). 

Feature extraction 

Six variables were extracted: No. of standardized problems 

related to Diabetes Mellitus (DM) (inpatient, outpatient and 

emergency department codes); No. of filled oral hypoglycaemic 

or insulin  prescriptions; No. of outpatient fasting glucose (FG) 

measurements ≥126 mg/dl; No. of outpatient FG measurements 

<126 mg/dl; No. of HbA1c measurements ≥6.5%; No. of 

HbA1c measurements <6.5%. These variables were also used 

in previous research [6; 12]. Oral glucose tolerance 

measurements were left out in order to avoid making a 

diagnosis of gestational diabetes. Random ≥200 mg/dl blood 

glucose was not considered since it was difficult to establish if 

it coincided with diabetic symptoms, as indicated by the criteria 

of the American Diabetes Association (ADA). 
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Manual chart review 

Four researchers manually reviewed all records and classified 

patients, analyzing all available information in the 

EHR. Patients were classified as: 

• Diabetics: The ADA criteria [2] to classify patients as 

diabetics were used. Also, patients whose records 

stated that they were diabetics were classified as such. 

• Not diabetic: To be classified as a non-diabetic, 

patients must have at least one FG measurement 

below 126 mg/dl, and must not have any references in 

their records regarding being diabetic or fulfill any of 

the ADA’s criteria for DM. 

• Inconclusive: Patients without a reference in their 

EHR regarding their diabetic status, nor a normal FG 

measurement, were classified as inconclusive. Those 

who had a single FG value above 126 mg/dl without a 

subsequent confirmatory measurement were 

characterized in the same way. 

The level of agreement among researchers was assessed using 

the Kappa coefficient with a value of 0.92 (95% CI: 0.84, 0.99). 

Algorithm development and validation process 

 

Figure 1 - General process of developing and validating 

phenotyping algorithms. EMR: Electronic Medical Records 

Rules-based algorithms 

In our study, we included two algorithms of this type: 

• Classification of patients according to standardized 

codes: patients were classified as diabetics if they had 

at least one DM code in their EHR. 

• Boolean logic algorithm (Adapted from Kho, Wilke, 

and Nichols): we used a combination of these three 

algorithms. 

 Algorithms based on statistical learning 

Four of these learners were included individually: multinomial 

logistic regression, random forests, neural networks and 

support vector machines with radial kernel. According to their 

performance on the test set, the best one was evaluated in the 

validation set. 

The problem of imbalanced datasets 

We opted to use sampling techniques to adjust the imbalance 

between classes of the dependent variable. To select the best 

synthetic sampling algorithm, we divided the derivation dataset 

into a training and a test set. We then used the approach 

developed by Lopez et al. [9]: from the training set, we 

generated 19 sets of data by applying a combination of over and 

under sampling algorithms and analyzed them by means of four 

algorithms that use different approaches (neural networks, 

Elastic Net, Gradient Boosting Machine and C5.0). We then 

applied the trained learners on the test set (which remained 

unbalanced) and then ranked the datasets according to their 

performance. The best ranked dataset was used for the training 

of the statistical learning algorithms. 

Development of the meta-learner 

For the final prediction we selected the Elastic-Net 

algorithm. As a first step, we discarded those learners with 

significantly lower performance in the different subsets of the 

repeated cross-validation (RCV) (set 1). Then, four selection 

strategies were used: 1. We kept those algorithms whose 

performance in the different subsets of the RCV were less 

correlated (Pearson coefficient <0.75; set 2); 2. Using  

hierarchical clustering (Euclidean distance, complete method), 

learners were clustered according to their patterns of 

performance in the subsets of the RCV; the best within each 

cluster at different height levels were selected (sets 3, 4, 5); 3. 

We selected those with better performance within each family 

of algorithms (support vector machines, neural networks, 

decision trees, instance-based algorithms, algorithms, 

Bayesian, discriminant analysis, and linear models (set 6). Each 

of these versions of the meta-learner was evaluated on the test 

set and the most parsimonious and best performing learner was 

selected as the final model. 

Validation 

For the validation process, the different algorithms were 

evaluated in the validation set. The Kappa coefficient was used 

as the performance metric. 

All analyses were performed using R (R Foundation for 

Statistical Computing, Vienna, Austria.) URL: https://www.R-

project.org). 

Results 

Table 1 shows the characteristics of the patients included in 

both datasets. We can observe that patients from the sample of 

2015 (validation dataset) generally have a greater number of 

measurements. 

Table 1 - Characteristics of patients included in the training 

and validation datasets. DM: Diabetes Mellitus; FG: Fasting 

glucose. 

 Training Set (2005) Validation Set (2015) 

 Non - DM DM Unde-

fined 

Non - DM DM Undefined

n 1249 121 293 698 58 44 

Number of DM-related codes (me-

dian [IQR]) 

0.00 

[0.00, 0.00] 

1.00 

[1.00, 

1.00] 

0.00 

[0.00, 

0.00] 

0.00 

[0.00, 0.00]

1.00 

[1.00, 2.00]

0.00 

[0.00, 

0.00] 

Number of DM-related prescrip-

tions filled 

0.00 

[0.00, 0.00] 

3.00 

[0.00, 

7.00] 

0.00 

[0.00, 

0.00] 

0.00 

[0.00, 0.00]

13.50 

[1.00, 

34.25] 

0.00 

[0.00, 

0.00] 

Number of FG ≥126 mg/dl  0.00 

[0.00, 0.00] 

2.00 

[1.00, 

4.00] 

0.00 

[0.00, 

0.00] 

0.00 

[0.00, 0.00]

4.50 

[2.00, 9.00]

0.00 

[0.00, 

0.00] 

Number of FG <126 mg/dl 2.00 2.00 0.00 7.00 7.50 0.00 
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[1.00, 3.00] [0.00, 

4.00] 

[0.00, 

0.00] 

[3.00, 

11.00] 

[4.00, 

15.75] 

[0.00, 

0.00] 

Number of HbA1c ≥6.5%  0.00 

[0.00, 0.00] 

1.00 

[0.00, 

2.00] 

0.00 

[0.00, 

0.00] 

0.00 

[0.00, 0.00] 

2.00 

[0.00, 7.00]

0.00 

[0.00, 

0.00] 

Number of HbA1c <6.5% 0.00 

[0.00, 0.00] 

1.00 

[0.00, 

2.00] 

0.00 

[0.00, 

0.00] 

0.00 

[0.00, 0.00] 

3.00 

[1.00, 6.00]

0.00 

[0.00, 

0.00] 

Age (mean (sd)) 60.52 

(11.48) 

66.22 

(9.09) 

53.94 

(10.64) 

60.12 

(11.15) 

66.47 

(9.89) 

55.00 

(10.07) 

 

The results of all proposed algorithms are presented in figure 2 

and table 2. 

 

Figure 2 - Algorithm performance across training, test and 

validation sets. 

 Development and selection of the synthetic dataset 

The dataset with best performance was a combination of 

Synthetic Minority Over-Sampling Technique (SMOTE) and 

Edited Nearest Neighbors (ENN) and was selected for the 

training of models. See figure 3. 

Figure 3 - Averaged performance of four algorithms trained 

on different datasets, in the testing set. SMOTE: Synthetic 

minority over-sampling technique; BL: Borderline; ADASYN: 

Adaptive synthetic sampling; over: over-sampling; under: 

undersampling; ENN: Edited nearest neighbors; TOMEK: 

Tomek links; NCL: Neighborhood cleaning rule. 

Algorithms based on statistical learning 

The network neural presented the best performance in the test 

set and therefore was evaluated in the validations set (figure 2 

and table 2). 

Development of the meta-learner 

Selection of models with the best performance 

Figure 4 shows the performance of the 16 algorithms under 

consideration for building the meta-learner. Five algorithms 

showed Kappa coefficient values clearly below the rest and 

were excluded. The remaining eleven constitute set 1. 

Selection of models based on low correlation 

We assessed the level of correlation of performance of the 

algorithms in the different subsets of RCV (set 1). We detected 

those correlations greater than 0.75; then the average 

correlation of both algorithms were compared and the one with 

the highest mean correlations with all other models was 

removed. RRF, GBM, EGB - Linear and Elastic Net were 

removed. The remaining six formed set 2. The results are 

presented in figure and table 2. 

 

Figure 4 - Algorithm performance averaged over 50 cross-

validation training subsets. RF: Random forests; svmRadial: 

Support vector machines with radial kernel; GBM: Gradient 

boosting machine; EGB: Extreme gradient boosting; k-NN: k 

nearest neighbors; RRF: Regularized random forests; MLR: 

Multinomial logistic regression; NB: Naïve bayes; NSC: 

Nearest shrunken centroids; PLS: Partial least squares; PDA: 

Partial discriminant analysis; LDA: Linear discriminant 

analysis. 

Table 2 - Performance metrics for four algorithm strategies 

in the validation set. NDM: Non-Diabetes Mellitus; DM: 

Diabetes Mellitus; INC: Inconclusive 

Perf. Measure Confusion Matrix Kappa
 Pred. x Reference 

Codes NDM DM INC

NDM 697 12 44 

DM 1 46 0 

INC 0 0 0 

0.59 

(0.49, 0.69) 

Boolean NDM DM INC

NDM 668 11 19 

DM 0 58 0 

INC 4 0 40
 

0.83 

(0.78, 0.89) 

Feedforward Neu-

ral Net 

NDM DM INC

NDM 682 0 4 

DM 16 58 0 

INC 0 0 40

0.90 

(0.85, 0.94) 

Stacked Generaliza-

tion (set 4) 

NDM DM INC

NDM 693 1 4 

DM 5 58 0 

INC 0 0 40

0.95 

(0.91, 0.98) 
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Selection based on hierarchical clustering 

Figure 5 shows the dendrogram generated from the hierarchical 

clustering of the performance of the different algorithms in the 

subsets of RCV. Three cutoff points were chosen. For cutoff 

level, the algorithm with best performance by cluster was 

selected (Set 3: RF, svmRadial, k-NN, GBM; Set 4: 3 Set + 

MLR; 5 set: Set 4 + Neural Net, EGB - Linear). Each set was 

then used as input for a different version of the Elastic Net-

based meta-learner. Each version was tested in the test set. Set 

4 presented the best combination of performance and 

parsimony and was selected to be applied to the validation set. 

 

Figure 5 - Hierarchical clustering of classification algorithms 

based on their performance in the CV datasets. 

Salection based on algorithm family 

We selected those algorithms with the best performance within 

each family, to form set 6 (SVM radial Kernel, neural network 

with a single layer, EGB - Linear, Random Forests and k-

Nearest Neighbors). 

Selection of the best meta-learner 

Finally we compared the performance of different versions of 

the meta-learner in the test set. The version that used set 4 as 

input presented the best combination of performance and 

parsimony. Its ability to classify patients was then evaluated in 

the validation set (figure 2 and table 2). 

Discussion 

Three of the four algorithms evaluated on the validation set 

showed excellent performance in terms of the Kappa 

coefficient. Our decision to use this metric above others more 

commonly used, such as accuracy, was related to the need for 

high levels of classification within each of the categories given 

the imbalance of classes in our dataset. This can be affected 

when the considered metric is accuracy, since it does not 

consider the agreement for each class but only the level of total 

error in the confusion matrix. 

Each strategy presents pros and cons that are important to 

consider, since performance is not the only variable to take into 

account when selecting an algorithm to apply. Algorithms 

based on rules have the advantage of being simple and easily 

scalable with minimum processing time. However, we found 

that their performance is clearly lower than those based on 

statistical learning and stacked generalization. The neural 

network showed a high level of optimism (the difference in 

performance between the training and the validation set). This 

was less significant for the stacked generalization, which would 

go in hand with the main objective of this strategy — to reduce 

overfitting to the training set. The version of the meta-learner 

that used set 4 as input showed the best metrics of classification 

in the validation set. Its implementation for research would be 

helpful, but probably not so for real-time applications given the 

higher processing time compared to simpler approaches. 

Conclusion 

We evaluated the performance of different strategies for the 

development of diabetes phenotyping algorithms using data 

extracted from an EHR from Argentina. The stacked 

generalization strategy showed the best metrics of classification 

in the validation set. The implementation of these algorithms 

enables the exploitation of the data of thousands of patients 

accurately, and a reduction of costs compared to traditional 

ways of collecting data for research. Thus, millions of patients 

from developing countries could benefit from local and specific 

data that could lead to treatments that take into account all their 

characteristics (genetic, environmental, habits, etc.) as it is the 

objective of precision medicine. 
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