
Making Sense of Patient-Generated Health Data for Interpretable Patient-Centered Care:        
The Transition from “More” to “Better”

Pei-Yun Sabrina Hsueha , Sanjoy Deya, Subhro Dasa, Thomas Wetterbc

a Center for Computational Health, Watson Research Center, Yorktown Heights, New York, USA
b Department of Biomedical Informatics and Medical Education, University of Washington, USA

c Institute of medical Biometry and Informatics, University of Heidelberg, Germany

Abstract

The rise of health consumers and the accumulation of patient-
generated health data (PGHD) have brought the patient to the 
centerstage of precision health and behavioral science. In this 
positional paper we outline an interpretability-aware 
framework of PGHD, an important but often overlooked
dimension in health services. The aim is two-fold: First, it 
helps generate practice-based evidence for population health 
management; second, it improves individual care with 
adaptive interventions. However, how do we check if the
evidence generated from PGHD is reliable? Are the evidence
directly deployable in realworld applications? How to adapt 
behavioral interventions for each individual patient at the 
touchpoint given individual patients’ needs? These questions 
commonly require better interpretability of PGHD-derived 
patient insights. Yet the definitions of interpretability are often 
underspecified. In the position paper, we outline an 
interpretability-aware framework to handle model properties 
and techniques that affect interpretability in the patient-
centered care process. Throughout the positional paper, we 
contend that making sense of PGHD systematically in such an 
interpretability-aware framework is preferrable, because it
improves on the trustworthiness of PGHD-derived insights
and the consequent applications such as person-centered 
comparative effectiveness in patient-centered care. 
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Introduction

Owing to the trends in participation health [1] and value-based 
care [2], health consumer perception and adoption of direct-to-
consumer devices and sensors and citizen science are at all-
time high.[3] Meanwhile, more and more leading healthcare 
systems are evaluating the secondary use of patient-reported 
outcomes measures (PROM) in electronic health records 
(EHR).[4] A plethora of patient-centered data generating 
devices and care processes are producing masses of data.

The early evidence has started to emerge and stimulate the 
field through best practices.[5] As shown in Figure 1, many of 
the healthcare applications hinge on the convergence of 
PGHD and clinical data, as well as the clinical and patient 
information system. This is in line with the vision of patient-
centered care as defined in a recent patient advocacy 
testimonial in Health Affairs [6] as “the experience (to the 
extent the informed, individual patient desires it) of 
transparency, individualization, recognition, respect, dignity, 

and choice in all matters, without exception, related to one’s 
person, circumstances, and relationships in health care.”

In particular, two opportunity areas emerge. First, PGHD
helps generate practice-based evidence for population health 
management.[7] Traditionally, clinical evidence is generated 
from costly randomized controlled trials (RCT) and 
comparative effectiveness studies in observational clinical 
data such as EHR, claims and administrative databases. 
However, as indicated in the recent Institute of Medicine 
(IOM) report [8], it is important to start designing clinical 
information systems that can help capture the patient’s state
such as social, behavioral and environmental determinants, 
while fitting situational use of PGHD-derived evidence in the 
clinical context.[4,6]

Second, PGHD improves individual care through adapting
interventions against the incoming stream of patient 
observations (e.g., lifestyle and physiological measures) and 
outcome history. The initial results show potential in making 
sense of PGHD for clinicians and care coordinators [9,10] and 
fitting situational use of PGHD (for example, for adaptive 
trials of mobile app-based behavioral interventions [11]). 

Figure 1– Convergence between PGHD and clinical data in
clinical/patient information system for patient-centered care. 

Both opportunity areas lead to many subsequent questions 
regarding the interpretability of PGHD in real-world 
healthcare applications. For example, how do we check if the 
chunks of evidence generated from PGHD are reliable? Are 
they directly deployable in real-world healthcare applications? 
How to adapt the behavioral interventions for each individual 
patient at the touchpoint given individual patients’ needs?
Despite the recent attention in developing interpretable 
machine learning models for healthcare applications [12,13], 
the definitions of interpretability are underspecified due to the 
many different motivations.[14]  
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Method

In this positional paper, we hereby first review the major 
dimensions underneath the interpretability mentions. Then, we 
address the next challenge for the development of health 
informatics tools to enhance the interpretability-awareness of 
PGHD-derived insights. We summarize the various issues and 
model properties that should be addressed in an 
interpretability-aware framework (as shown Figure 2 below). 
Next, we highlight the emerging practices in which the 
framework provides value to patients and clinicians and 
improves care delivery. Finally, we examine present and 
future challenges to incorporating PGHD-based evidence back 
into the care flows, and utilizing cleansed and approved data 
for purposes beyond their primary context and motivation of 
collection. 

Figure 2– Interpretability-aware framework for population 
evidence discovery and individual intervention adaptation

Summarizing Major Dimensions of Intepretability from 
Patients’ Perspective

To understand major dimensions behind interpretability, we 
need to first review the motivations of improving 
interpretability in different dimensions. For example, [15] 
explains and quantifies the intepretability metrics for decision 
rule-based analytics. Here are a few dimensions that we 
identified for applying machine learning models to generate 
practice-based evidence and adapt interventions for 
individuals. 

Complexity: As noted in [16], humans are best able to reason 
about models that are composed of simple forms such as 
decision trees.[17,18] This interpretability constraint on model 
complexity persists when it comes to generating N-of-1
models to tailor intervention recommendations. In practice, 
this involves further constraining policy learner architectures 
to limited sets of simple rules – first at the population level, 
and then at the individual level. This has inspired a variety of 
methodological advancements recently. For example, 
combining reinforcement learning and regression trees can 
produce simpler policies for human inspection.[19] Recent 
results suggest that simple explainable policies could be 
achieved in complex problems, such as fine-tuning adaptive 
evaluation of behavioral intervention strategies.[11]

Knowledge Structural Similarity: The interpretability can also 
be defined as a distance metric based on the known domain 
knowledge. Intuitively, closer the concepts covered by PGHD, 
easier is their tnterpretion. Suppose there exist some 
relationships among the features defined in a hierarchical 
manner as represented by a tree or directed acyclic graph. The 
inherent hypothesis is to make sure that the similar features 
should have similar model co-efficients learnt by the model. 
One popular approach is group LASSO [20] based techniques, 

which can pose additional constraints on the above equation to 
make sure that all the nodes rooted in a particular subtree will 
have similar parameters during model learning.

Quality: Another major hindrance of patient interpretation of 
data is the quality issues of PGHD. The sources of errors in 
PGHD is multi-fold. For self-reported data, the baseline of 
patient-reported outcome and lifestyle information (for 
example, daily calorie intake) varies from person to person, 
resulting in under-reporting or over-reporting. Moreover, the 
measurements from health wearables and IoT (Internet-of-
Things) sensors are often noise corrupted due to inappropriate 
placement, incorrect use, regular wear and tear of the devices. 
To overcome the data quality issues, the process of imputing 
missing values and detecting anomalies and outliers are then 
needed to train models; which in turn is used for forecasting. 

Usability: HCI researchers conducted qualitative studies (e.g., 
[21]) to make sense for patients of their own data and in 
addition, to identify interpretability-impeding factors, 
including: confounders, noisy on meaningful and irrelevant 
measures, and how to determine the time lag of outcome-
affecting triggers at the individual level . 

Causality: To further ensure that the framework can provide 
statistically sound interpretation, we surveyed the causal 
inference research to understand the effect of following 
assumptions [22]: consistency (i.e., whether one’s features and 
outcomes are consistently observed when the actions are 
taken), stability (i.e., whether one’s features and outcomes are 
affected by other subjects’ actions), and unmeasured 
confounders (i.e., what is the sensitivity of conclusions with 
factors that influence the assignment of treatments).

The survey leads us to believe that there exist quite diverse 
views behind the concept of interpretability, and the field of 
health informatics needs to reconcile the differences by first 
making the previously implicit assumptions more explicit. 

Developing Interpretability-Aware Framework

The development of the interpretability-aware framework is
based on a two-layer approach: (1) “Learn from Big data”: 
PGHD from heterogeneous sources are aggregated to learn 
practice-based evidence for optimal outcome (e.g., efficiency 
of patient capacity) and (2) “Adapt with Small data”: 
interpreting evidence through comparing the effectiveness 
across interventions and adapting  in a patient-centered way.

Learn from Big Data: PGHD to Practice-based Evidence

First, in order to learn interpretable practice-based evidence 
that can be conferred from the secondary use of PGHD, we 
need principled and scalable approaches to address the 
interpretability issues: model complexity and knowledge 
structural similarity. The goal is to minimize the model
complexity during the process of interepreting model 
parameters, while boosting knowledge structural similarity to 
account for prior knowledge during model development. 

Interpreting Model Parameters: Most informatics tools rely on 
learning a set of parameters that are associated with the 
features extracted from raw PGHD. In particular, an objective 
loss function is defined based on the original model outcomes 
and the predicted outcomes using the parameters of the model 
and then, those parameters are learnt from PGHD such that the 
loss function is minimized. Let X denote the original feature
set, y the outcome, and W the model parameters. The loss 
function can be represented as below: 

min
�

   L(X, W, y)
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Once the model parameters W have been learnt from the 
model, it is further analyzed to interpret the model. For exam-
ple, the  coefficients obtained from a logistic regression model 
can be converted into an odds ratio, which is easier to interpret 
by domain experts who prefer models of simpler forms.[16]

Another useful technique to interpret the model parameters is 
to impose some sparsity constraints on the model parameters. 
In that case, the objective function will contain both the 
original loss function and an additional penalty imposed on 
the complexity of the parameters. The function is shown in the 
equation below, where ���� denotes the complexity of model 
parameter set W. One popular example of such loss function is
L1-norm regularization penalty [23], since it can perform 
feature selection simultaneuously with model learning, and 
that will help reduce model complexity:

min
�

L(X, W, y) + �(W)

Taking prior knowledge into account: Despite that PGHD are 
usually collected from heterogeneous data sources, the 
observational data can be interrelated by certain latent factors 
or well-established medical knowledge. For example, most of 
the interventions and care workflows are conducted using a 
few well-established guidelines. Such guidelines can capture 
the inherent relationships among observational healthcare data 
including both PGHD and EHR.  

In addition, features obtained from observational data may be 
well structured with semantic relationships among them. For 
example, drugs, adverse reactions and diagnostic similarity 
each has clear role in a hierarchical organization based on how 
specific or generic it is in its mechanism of actions. 

These pre-existing relationships are usually curated with the 
help of multiple domain experts and a standardized 
protocol.[24] In particular, the interpretability metrics is 
quantified as knowledge structural similarity, using a distance 
metric based on the distance of each pair of features in its 
hierarchy 

��� =  
��	
�(�
�(��, ��))

max���	
�(��), ��	
�(��)�

Here, LCA defines lowest common ancestor of each pair of 
two features Xi and Xj, and depth of Xi defines length of the 
shortest path from the root of the tree toward Xi. Moreover, 
this distance metric is normalized by the maximum depth of 
the two features. Finally, this new metric is incorporated in the 
original penalty structure of the objective function as below:

min
�

   L(X, W, y) + ��(W) � ��(H)  

Note that similar concepts can be generalized when prior 
relationships exist not only among the features from one type 
of data, but also features coming from multiple data-sources
such as the heterogeneous exogenous determinants in PGHD.

Adapt with Small Data: Interpret from Patient Perspective

Second, in order to adapt interventions on an individual basis,
we include an optimal policy learning component that can
tailor interventions against incoming streams of “small” data.
The goal is to provide interpretable evidence that can help
patients and their care teams make decisions that meet 
patients’ individual needs. In this paper, we introduce 
components of patient grouping and calibration to evaluate 
and to inform interpretability-aware analytics.

Patient Grouping: To overcome the barrier of “one-size-fits-
all” guidelines to treat all patients as an “average” patient, we
apply behavior segmentation methods [25] that can identify 

sub-cohorts that exhibit distinctive behavioral differences and 
extract signature behavioral patterns. In the framework, 
behavioral factors are constructed as a composite of multi-
source features for each subject in the cohorts. We illustrate 
the design of a framework able to generate, analyze and re-
rank the risk factors for the behaviorally different segments
(as shown in Figure 3; for a more detailed description of the 
key component of patient grouping, please refer to [25]). 

Figure 3 – Patient grouping for subcohort identification and 
behavioral pattern discovery

While patient grouping finds common static subcohorts 
directly against the incoming patient data, it has its own 
disadvantage. For example, it ignores the temporal relation 
within and among patient behaviors. The behavioral pattern 
discovery approach applies dynamic item response analysis to 
incorporate extensions to temporal patterns across multiple 
streams of data.[26] Such techniques are able to find patterns 
within groups of variables, patterns in a sequence of variables, 
or both. This further confirms the need to not treat all patients
as an “average” patient – as defined in the guideliens. 

In order to learn how confident we can be to deploy the 
PGHD-derived evidence in certain sub-cohorts, we need to 
quantify the population representativeness in each sub-cohort.
This is achieved through computing an entropy-based 
similarity index between the sub-cohorts. Low similarity 
shows the separability of the population segments. 

To improve the interpretability, prototypical user examples are 
used to provide explanations of why a certain evidence is 
generated for a particular sub-cohort. For each sub-cohort, we 
compute the prototypical core among the patients, as defined 
as 10% of the patients closest to the centroid in each patient 
group. The population means of the core and the whole sub-
cohort are then compared with F-statistics. Further the features 
whose means are beyond two standard-deviations from the 
entire population means, constitute the distinctive features of 
that segment. These then become parts of the explanation.

Calibration against Individual Data: In addition, we further 
design an adaptive real-time approach to address the quality 
issues abovementioned and to provide intermittent feedback to
individual patients. 

First, in the data cleansing step, the PGHD is processed for 
missing values and outliers using the machine learning 
methods and knowledge of domain experts. 

Next, the data goes through an adaptive predictive model, 
where the underlying data-driven phenomena are modeled as a 
noisy dynamical system. For each individual patient, 
predictions of future outcomes are compared with outcomes
that are actually measured. Low covariance variables are then 
marked for correction. A recalibrated model is then built from 
the original model and the correction feedback. The correction 
metric for the erroneous variable is then fed back to the data 
processing step to calibrate the individualized systems. 

P.-Y.S. Hsueh et al. / Making Sense of Patient-Generated Health Data for Interpretable Patient-Centered Care 115



Further, the system can prompt the users for labeling of inputs 
corresponding to the erroneous variables. This kind of 
dynamic feedback system will improve the data quality for 
analysis and improve the prediction accuracy for each person.

Discussion

In this positional paper, we summarize the major dimensions 
of interpretability and describe the interpretability-aware 
framework for further adding a patient focus into the care 
process. The interpretability-aware framework helps foster a 
continuous learning health care system as pictured in the “All 
of US” platform under the Precision Medicine Initiative 
(PMI).[27] The framework will establish prospective 
effectiveness based on the basic phenotypes found in mass 
data and new cases matching some basic phenotypes. This 
framework, when coupled with the best practice defined for 
clinical flow to increase patient understanding, is expected to 
further fuel the patient-centered care model for minimally 
disruptive medicine.[28] The framework is expected to 
facilitate the integration between science of data and science 
of care at the touchpoint. This is especially important for the 
complex care scenarios wherein standard guidelines and 
general population-based evidence fall short. 

Comparing person-centered effectiveness at touchpoint

Traditionally, comparative effectiveness studies are used to 
provide evidence to handle “average“ patients. Comparative
effectiveness studies, if done with a patient focus, can 
empower patients to better understand and take charge of their 
decisions. Therefore, in the proposed framework, we further 
include additional patient grouping and re-calibration steps to 
reinforce the patient focus.

In retrospect, it can also help identify hypotheses to be 
verified or falsified. Although classification modeling analysis 
has become a routine tool in health informatics research, 
extracting actionable insight from such information remains a 
major challenge. Formalizing the interpretability metrics and 
framework such as the correction metrics can help pinpoint
the previously unobserved inefficiency of practice and
attribute it to to variables that matter to patients sub-cohorts
and providers, as opposed to those that only add noise.

Putting Big Data and Small Data Together 

In terms of the actual implementation, formalizing and scaling 
up the interpretability-aware framework means solving 
various practical problems. These include conducting 
feasibility study of monitoring devices and developing new 
forms of outcomes. 

Take the assessment of stress-behavior relationship as an 
example. Traditionally, this is done with survey-based ecolo-
gical momentary assessment (EMA).[29] By coupling EMA
with mobile devices, we can repeatedly collect exposure data 
of psychosocial stressors in ecologically valid settings such as 
home and work, and in real time. Compared to the survey-
based EMA, mobile EMA enables collecting data with the 
immediate context and substantially reduces recall bias.[30]

In fact, oftentimes, we would not need to develop individual 
models from scratch, but rather to recalibrate the existing 
population-based model using user’s own data. The confi-
dence level can be estimated with the sub-cohort identified 
from the patient grouping step. The recent trends of N-of-1
trials have started to provide evidence on the effectiveness of 
such approaches for adaptive design.[30,31] Currently in the 
field, researchers are attempting to apply N-of-1 methods to 

develop individualized preditive pathways that can be applied 
to adapt interventions at the touchpoint directly. 

The societal approval and ethical issues going forward

It will also require a cultural shift from large, population-
based trials to ad-hoc, post-trial analyses that aim to interpret 
the factors that cause some patients to be responsive. We have 
to meet such challenges as balancing the economic power of 
holding the data against the moral maxim of equitable access 
for citizens to individualized recommendations. Since the data 
themselves often are public domain there is a moral obligation 
to make them available free of charge. Since the aggregation 
of the data requires proprietory technology, there is equal 
legitimacy to charge market prices for such recommendations. 

This compares to the question whether medical advice is a 
commodity or a merchandise.  We have to find answers for 
patients who find themselves in a Gestalt whose treatment by 
far exceeds their individual economic reach. We have to find 
agreement, world wide—since the origin of data is world 
wide—how to handle the detection in passing of alarming 
conditions: are we entitled to know the name of data source
and its identity and to take action? May we, who detect a risk, 
even be obliged to take action or else be taken accountable for 
nonfeasance, as physicians would be? Therefore, do we, as 
informaticians who are engineers in a wide sense, assume the 
role of physicians and hence inherit the moral standards that 
physicians have to uphold? Does such an obligation differ 
between individual risks and societal risks such as epidemics? 

Today, we are far from answers. We will, however, 
demonstrate how principles and maxims from ethics can be 
used as tools to address these and more question.[32]

Conclusion

The advent of large-scale PGHD collected from diverse 
sources poses unique opportunities to harvest insights about 
patients’ behavior and response to a particular treatment, 
which can ultimately be used to derive knowledge for making 
better clinical and self-care decisions. Given the prevalent 
adoption of EHR and the shift to value-based care, many 
leading healthcare systems are now evaluating the value of 
PGHD generated from care processes, which can be either 
used directly to enhance care processes, or aggregated in big 
data to derive practice-based evidence. 

Traditionally, the generation of clinical evidence relies on 
RCT and comparative effectiveness studies, which employ 
costly clinical trial research design and observational data 
sources such as EHR, claims and administrative data. While 
these data sources reveal valuable information about treatment 
effect and healthcare utilization, individual patient data are 
still needed to identify individually outcome-differential 
health determinants such as in their social, behavioral, 
environmental, and psychological factors. 

However, the current interpretability of PGHD-driven insights
is still questionable when applied to real world applications. In 
addition, the interpretation of such insights often hinges on 
experienced healthcare professionals (e.g., care managers). By 
applying the framework to communicate, it is easier to 
advocate for post-statistics decision models, which often incur 
new forms of outcomes and social desirability bias.

This inevitably incorporates humans in the loop during the 
process of transforming big data to practice-based knowledge 
and deploying such evidence at the touchpoint for individuals.
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In this positional paper, we first identify the major dimensions 
of interpretability. Then, we depict our intepretability-aware 
framework in which interpretable analytics are enhanced to 
better incorporate PGHD insights back to the care flow. The 
aim is two-fold. 

First, the proposed framework gives care team tools to address 
two major challenges: (1) Enable the generation of practice-
based evidence from aggregating “big data” from 
heterogeneous PGHD sources, especially useful for complex 
care scenarios wherein no clear evidence or guidelines are 
applicable; (2) Learn to further adapt population health-based 
recommendation with “small data” from individuals or sub-
cohorts for self-care and experimentation.  

Second, the framework aims to make personalized 
recommendations on what to intervene on at the touchpoint. 
However, oftentimes the human opinions are subjective and 
highly depend on their prior expertise and training, which lead 
to underlying bias and noise factors and decrease the 
generalizability of the model. Therefore, how to extract best 
practice and make it scalable throughout organizations and in 
real world applications is the key for future uptake in practice.  

These issues can be mitigated to some extent by taking human 
knowledge into account in an earlier stage of model 
development rather than during the model validation step. 
Therefore, the proposed interpretability-aware framework can 
help pinpoint more relevant yet explainable risk factors along 
with their relationships with disease outcome. The bottom line 
is that these methodological advances should be used to 
augment, but not to replace the central role of human insights 
in predicting behavior that can be intervened on.

Using the interpretability aware framework, we can also 
establish prospective effectiveness of interventions based on 
more interpretable basic phenotypes found by the patient 
similarity in mass data. This is important to identify evidence 
deployable for individuals with uncommon characteristics 
rather than hiding the apparent noise they contribute as 
variance and noise.  
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