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Abstract. As the era of Knowledge Based Engineering (KBE) and design 
automation has evolved a big effort has been put to automate CAD-models to 
quick and accurately respond to changes of customer specifications. The 
automated knowledge in these KBE-systems is represented as sets of rules, sets 
that are continuously growing. Parallel to KBE-systems knowledge is also 
automated in spread sheets (were the cells can be viewed as rules in a KBE-
system). These spread sheets also tend to grow in number and complexity. The 
vision of reusing corporate knowledge through automating it in computer systems 
are now threaten by the fact that the complexity makes it hard to grasp and manage 
what was automated. Complexity management and graph theory are scientific 
fields addressing these types of problems. This paper describes how engineering 
knowledge stored in CAD-models and spread sheets can be analysed through the 
application of graph theory, visualization and filtering. Information models of 
CAD-models and spread sheets are developed and applied to a real industrial case 
to generate and analyse the content.  
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Introduction 

In the era of information and knowledge management mass customization has been a 
strong driving force to automation of engineering processes. Big effort has been put to 
automate CAD-models to quick and accurately respond to changes of specifications [1]. 
This change has caused manufacturing companies to not only focus on developing 
single products but product families with wide and flexible design spaces. The 
automated knowledge is stored in KBE-systems (Knowledge Based Engineering) and 
is represented as sets of rules, sets that are growing in size and complexity as the mass 
customization evolves [2]. We also see that engineering knowledge is automated in 
spread sheets (the cells can be viewed as rules in a KBE-system). These spread sheets 
too tend to grow in number and complexity. The vision of reusing corporate knowledge 
through automating it in computer systems are now threaten by the fact that the 
complexity makes it hard to grasp and manage what was automated.  

                                                           
1 Corresponding Author, Mail: joel.johansson@ju.se 

Transdisciplinary Engineering: A Paradigm Shift
C. Chen et al. (Eds.)
© 2017 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-779-5-629

629



Two other trends during the information era have led to development of theories 
and tools that can be applied within engineering design and product development. 
These two trends are social networks and geographic information systems. Along with 
the development and utilization of these big infrastructures in the society also methods 
and tools for graph visualization and filtering have emerged that can be utilized by 
within engineering design with little effort but with big potential [3][4]. 

Visualization of interdependencies of elements in CAD-models has been target as 
a research subject. Kozlova et. al. reviewed how graph visualization can be used for 
CAD-models of architectures [5] they also developed prototypes for interactive graph 
visualization. The focus of that work was the visualization of the graphs and functions. 
Tsygankov et. al. [6] studied how to semantically represent the building process of 
CAD assemblies containing multi-body components. Camba et. al. [7] developed 
methods to travers CAD-models of components to identify and visualize dependencies 
between features. Marchenko et.al. [8] developed a tool to represent CAD-models as 
graphs in CATIA, that work considered how the elements of the CAD-models were 
connected not only as parent/child relations but also through mathematical formulas. 

This paper focus on what types of relations exist within CAD-models (features, 
components and assemblies) and in spread sheets connected to them. Also, it describes 
how engineering knowledge stored in CAD-models and spread sheets can be analysed 
through the application of graph theory, visualization and filtering. The paper is 
organised as follows: First the information models for CAD-models and spread sheets 
are introduced and graph theory in connection with these information models is 
presented. The theory is then applied to a real case which is a CAD-model that was 
automated using spread sheets as design tables that grew out of control. 

1. Dissecting the constituents of engineering knowledge 

In this study, we focus on CAD-models that are controlled by spread sheets. The 
original reason to connect spread sheets to CAD-models was to define family tables, i.e. 
sets of similar components derived from a single parametric CAD-model. That is an 
efficient way of handling parametric design of for instance fasteners, washers or other 
components. Things are getting more complex when adapting such an approach to 
assemblies of components. The increase in difficulty is due to the introduced 
combinatorial complexity of the assembled components. To handle the complexity, and 
for other reasons, it has become common to use the cells in the spread sheet not only to 
specify the values for each member of the design family but also to add mathematical 
relations within the spread sheets to change the values in the family table.  

We will take a close look at these two types of engineering content, CAD-models 
and spread sheets, to see how they are constituted and how they are connected to make 
a foundation to further studies in knowledge and complexity management.   

The information model of a CAD-model can be constituted in many ways and 
differs between CAD-systems (therefore neutral CAD-formats are needed). In Figure 1 
a schematic information model is shown where the most fundamental components are 
drawn. An assembly, is as seen in the figure, composed of instances of parts which 
can either be components or assemblies of instances (the terminology differs 
somewhat between what is a part and what is a component, here a component is a piece 
made from one material, a part can be either one component or a composition of 
components). Components are made up from at least one feature while assemblies 
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may contain features or not. Components and assemblies may contain parameters 
which are carriers of base type data such as Booleans, integers, doubles or text values 
packed with a name. Assemblies and components may contain equations, which are 
mathematical expressions between parameters. The most common type of feature in 
CAD-models is geometrical features. Geometrical features are composition of 
entities which may be two or three dimensional geometrical elements, such as points, 
lines, curves, planes, and surfaces. Geometrical dimension or constraints are special 
type of parameters that make references to geometrical entities to control their 
definitions. 

 
Figure 1. Information model of CAD-model.  

 

 

 
Figure 2. A typical model tree in CAD-systems only 
shows “part-of” relations. 

Table 1. Five types of relations are identified within CAD-models (the two marked by * are the only relation 
types that are undirected). Connected constituents are defined in Figure 1 and Figure 3. 

Relation type Connected constituents Realized by 
Part-of Entity → Feature Feature entities 
Part-of Feature → Component Component features 
Part-of Component → Assembly Assembly instances 
Part-of Cell→WorkSheet WorkSheet 
Part-of WorkSheet→WorkBook WorkBook 
Kind-of Instance → Part Instance 

Connection   Entity → Feature References in feature 
Mathematical Parameter → Parameter, Cell → Cell Expressions in equation, Formula 
Connection* Entity ↔ Entity, Part ↔ Part Geometrical constraints 

Spatial* Entity ↔ Entity Location 
 

There are several types of relations in a CAD-model. As seen from Figure 1, 
components are related to assemblies as “part-of” relations. Features, parameters and 
equations are also “part-of” components, and entities are “part-of” features. These 
relations are easy to understand and are often visualized in the CAD-system through a 
“model tree”. A typical model tree is shown in Figure 2 which contains a top assembly 
(Assembly1) having three instances of parts (2 SubAssembly1 and 1 SubAssembly2). 
SubAssembly1 in turn is composed of two instances of Component1 which is made up 
from Feature1 and Feature2 (only few CAD-systems show the instances in the model 
tree).  

There are other relations in the CAD-model than these “part-of” relations, relations 
not that obvious but interesting to engineers when developing and maintaining the 
models. One such relation is references between geometrical entities through 
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geometrical dimension or constraints. For instance, if creating a feature with references 
to an already existing feature there is an ordering relation, referred to as parent/child 
relation. Deleting the first feature will cancelling the other one. It is possible in most 
CAD-systems to add logics to the CAD-model through equations. The equations may 
refer to geometrical dimensions that in turn change the size or even topology of the 
geometry of the CAD-model. Such relations are here called mathematical relations 
(these relations could also be viewed as parent/child relations if they are unary 
expressions). The relations are modelled as edges in the graphs per Table 1. 

Spread sheets are frequently used within engineering design to store and manage 
information regarding the product and is indeed a part of the product model. Spread 
sheets may be connected to CAD-models as design tables or as a part of the 
geometrical build process as an “analysis” features. The reason for adding spread 
sheets as a part of the product model is the flexibility to model information yet 
overview the information provided by spread sheet applications. The central concept in 
spread sheet applications is the cell. In Figure 3 a schematic information model of

 a spread sheet is draw. 
Cells resides, as seen in the figure, in 

worksheets and worksheets resides in 
workbooks. A cell may contain a 
formula that refers to other cells. 
Formulas act as functions with several 
input cells but with one output only, 
which is displayed in the cell containing 
the formula. When connected to a CAD-
model we can view these functions as 
rules in a KBE-system according to the 
definition of KBE in [9], the inference 
engine is then realized by the spread sheet 
application. 

 
Figure 3. Information model of spread sheet. 

A graph G(N, E) is a set of nodes (N) and edges (E). The nodes represent entities 
of interest and the edges represent how they are connected as tuples of two nodes first 
one is the source node and last one is the target node [10]. When two nodes are 
connected through an edge they are said to be neighbours. The nodes represent entities 
of interest and the edges represent how they are connected as tuples of two nodes first 
one is the source node and last one is the target node. Edges can be directed or 
undirected [10]. When two nodes are connected through an edge they are said to be 
neighbours. The degree of a node is defined as the number of neighbours it has, i.e. 
how many edges are pointing in and out from it. In-degree refers to how many 
neighbours a node depends on and out-degree how many neighbours are depending on 
it. 

To add meaning to the graph it is useful to add attributes to nodes and edges. 
Attributes were added to the nodes and edges in this paper are listed in Table 2. The 
EdgeType attribute is what separates the graphs presented in the paper from the model-
trees in CAD-systems. With this attribute, it is possible to model how the entities are 
connected. When reviewing the class diagrams in Figure 1 and Figure 3 five different 
types of couplings are found, these are listed in Table 1. The values in the first column 
of that table is used as possible values of the EdgeType attribute and as labels for the 
edges.  
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To understand huge graphs, it is necessary to filter their vast content and two 
combinations of filters are suggested here. The first set of filters is the combination of 
retrieving nodes of types “Geometrical Dimension”, “Parameter” and “Cell” (i.e. nodes 
representing entities that control the design) and of degree 0. The entities represented 
by the retrieved nodes of such filter are the entry points for the CAD-model, changing 
any of their values impacts the design. We call these values design parameters. 

With edge filtering, it is possible to filter different structures (or nets) of the CAD-
model. Filtering edges on “External connections” yields the interfaces between the 
CAD-model and design tables. Adding edges of types “Mathematical” gives the entire 
set of logics for the CAD-model, which is the second suggested set of filters. The nodes 
resulting from that filter represents the logical part of the product model. 

Table 2. Four attributes were added to develop the graphs in this paper.  

Name Applies to Description 
URI Nodes Unique Resource Identifier. Includes file path and internal path to the 

represented entity. 
Label Nodes, Edges Text to show in graph.  

EntityType Nodes Type of entity as in Figure 1 and Figure 3 
EdgeType Edges Type of relation as defined in Table 1 

2. Putting the parts together 

To get a seamless overview of the engineering content CAD-models and design tables 
as connected spread sheets can be analysed to render graphs using the theory in the 
previous section. There are two algorithms used to do the analysis, the first one travers 
the CAD-model and its sub-models to extract the nodes and edges. The second 
algorithm analyses any spread sheet connected to the CAD-models or referred to in 
spread sheet to extract nodes and edges within them and in connection to the CAD-
model. 

We make a simple example to demonstrate the output from these algorithms. Let 
say we have a CAD-model containing a box with a hole through it. The model-tree is 
of course simple containing two extruded sketches, one to make the box and one to 
make the hole. The two sketches are shown in the model tree. The CAD-model is 
controlled by a design table so that height, width and length are controlled by the cells 
in in a connected spread sheet. Two configurations (or product instances) are defined. 
The values for the first configuration is in turn controlled by a cell in another spread 
sheet. 

Applying the algorithms to the simple box-with-hole example yields a graph with 
22 nodes and 28 edges. The graph is visualized in Figure 4 with the Yifan Hu layout 
algorithm [11]. There are seemingly duplicate nodes (for instance two D1) this is 
because of using short names on the nodes (Label attribute). The nodes are unique with 
the URI attribute identifying them. It is possible to retrace the URI from the Part-Of 
connections, we then see that both Sketch1 and Sketch2 have a dimension D1. For cells 
in spread sheet one must review the URI attribute to see the entity-location. 
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Figure 4. Graph illustrating the relations in the CAD-model, design table and in between. 22 Nodes and 28 
relations. 

Applying the filters to retrieve design parameters results in 7 design parameters: 
the nodes D1, D2 and D3 (green) to the left and B1, B2, B3 and the other B3 (blue) to 
the right in Figure 4. This is interesting as it indicates that every value in a design table 
indeed is a design parameter. In the box-with-hole example the number of design 
parameters is reduced by the formulas for the Default configuration controlled by B3 in 
the other sheet. Applying the filter to retrieve the logics behind the example yields a 
graph showing how the 7 design parameters are interconnected with mathematical 
expressions.  

3. Real Case Example 

To verify the concepts presented in the previous sections a prototype software was 
developed and applied to a real-life example. The company where the software was 
tested develops and manufactures heated runner systems for injection moulding of 
plastic materials and is the same company as described in source [12]. To verify the 
concepts presented in the previous sections the algorithms applied to a real-life 
example. The company where the software was tested develops and manufactures 
heated runner systems for injection moulding of plastic materials and is the same 
company as described in source [12].  

One reason to analyse the CAD-models at the company was that the product is a 
product suitable for design automation. Every produced hot runner system is unique. 
Even if unique there are standard procedures to render the final product. This led to the 
automation of the CAD-models through interconnected spread sheets as design tables. 
Due to the combinatorial complexity of the product mathematical equations were added 
as equations in the CAD-models as well as in the spread sheets. This approach made 
the CAD-system instable so that when adding several instances of the in-gates it 
eventually crashed after long time (sometimes up to 40 minutes) of crunching. It didn’t 
always crash so the engineers tended to wait and hope for it to go through. The 
crashing problems were eliminated when reforming the CAD-models as described in 
source [12], the graph shown at end of the paper may give a clue of why the model 
became so difficult to handle. 

The prototype software took 2 minutes to generate the entire graph as presented in 
Figure 5. The output from the routine is a file containing the graph in Graph Modelling 
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Language (.GraphML) which is a general, XML-based language, to store graphs in a 
standardized way [13]. To visualize the graphs several freely available software 
applications were tested (the pictures in this paper were generated using Gephi [14] 
with the Yifan Hu [11] and Force Atlas 2 [15] layout routines). The graph contains 
3932 nodes (47% formula, 28% geometrical dimension, 17% feature, 2.9% instance, 
2.2% cell, 0.7% Component, 0.6% Assembly, 0.2% parameter) connected in 11321 
relations. 

 
Figure 5. (Left) CAD-model that comes in 17 billion variants. (Right) CAD-model and interconnected 
spread sheets. 3938 nodes connected in 11321 relations. The firework shapes are from spread sheets, and the 
top part is from the CAD-model (all nodes are connected). 

The CAD-model targeted consists of five sub-parts of which only one is an 
assembly (which in turn consist of three components). In total, we are talking about 7 
components in two assemblies which seems very little to make a CAD-system to 
collapse. What makes it so difficult is the vast number of variants for each component 
(stored in the same model). Another problem lays in the application of the product 
which is to operate in much higher temperature than it is produced which resulted in 
several temperature configurations for each component. The top-level assembly 
contained 42 equations controlling features on all levels. 

The spread sheets connected to the CAD-model as design tables included all 
possible combinations of the components. The combinations where added using 
formulas in the spread sheet so that when changing certain cell values then parts of the 
design table were changed (this method works for ETO-products). In total the design 
table contained 1248 cells and there were additionally 46 cells with data and formulas 
to adjust the values in the design table. 

The prototype software took 2 minutes to generate the entire graph as presented in 
Figure 5. The output from the routine is a file containing the graph in Graph Modelling 
Language (.GraphML) which is a general, XML-based language, to store graphs in a 
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standardized way [13]. To visualize the graphs several freely available software 
applications were tested (the pictures in this paper were generated using Gephi [14] 
with the Yifan Hu [11] and Force Atlas 2 [15] layout routines). The graph contains 
3932 nodes (47% formula, 28% geometrical dimension, 17% feature, 2.9% instance, 
2.2% cell, 0.7% component, 0.6% assembly, 0.2% parameter) connected in 11321 
relations. 

When applying the filters, there are 1165 entry points of which the majority are of 
Geometrical Dimension type further filtering shows that there are 12 parameters and 86 
cells. These entities should be managed and the information regarding them should be 
made easy to retrieve to engineers. The logical model consists of 1248 external 
connection and 6990 mathematical connections. 

4. Discussion 

As seen in this paper it is possible to penetrate CAD-models and spread sheet to extract 
and visualize graphs. The method is not limited to CAD-models or spread sheet but 
could be applied to FEA-models, Manufacturing models or other types of models of the 
product if there are APIs or a deep understanding of the information models. Question 
is what can be achieved by these graphs? 

It was possible to identify how design tables are connected to the CAD-model. 
Filtering techniques were applied to retrieve all entry points for the CAD-model and to 
visualize the product structure and the structure of the logical entities. 

The combinatorial complexity of products when starting to automate CAD-models 
is often underestimated, as mentioned in source [12] there are stunningly 17 574 
796 800 possible and impossible combinations of components for the in-gate model. 
The combinatorial complexity of products when starting to automate CAD-models is 
often underestimated, as mentioned in source [12] there are stunningly 17 574 796 800 
possible and impossible combinations of components for the in-gate model. Even if 
seemingly large that figure is small when talking about combinatorics. Due to this 
complexity, it is necessary to help engineers to manage the design content and to see 
what impacts their decisions have in this aspect.  

The graphs must be filtered to make sense in the context of the decision to be taken. 
The two filters mentioned in this paper are general and useful for all models of this 
kind but the filtering is individual and context based so it is necessary to provide 
engineers with filtering possibilities rather than fixed filters. Filtering possibility is 
tightly connected to the attributes added to the nodes and edges, so that more attributes 
gives more filtering possibilities. A higher granularity of Mathematical relations would 
make it possible filter in the 6990 connection in the case example. Attributes can be 
organized in categories.  

If making the graph contextual, filtered, and embedded into the CAD-system as a 
different view of the CAD-model the graphs could be used throughout the entire 
product life-cycle. In the conceptual phases and in design phase the graphs would serve 
as visual feed-back to engineers. It would guide them to develop more lean and re-
useable models of the product knowledge. If the product is already developed the 
graphs could be used during modularization project (graph clustering) or in carry over 
project between product generations. The graphs would in such cases serve as a 
foundation for recapturing the knowledge. When maintaining the product models the 
graphs would provide functionality for change propagation analysis. 
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During the penetration of the product models it would be possible to store 
comments and formulas (content) as additional attributes to nodes. If doing so the 
network would conform well with the connectivistic view on what knowledge is [16]. 

5. Conclusion 

This paper is a starting point of applying the connectivistic view of knowledge [16] to 
knowledge based engineering. It was shown that by scanning the elements within a 
knowledge base in a KBE system it is possible to visualize and navigate its content 
through graphs. It was also shown that it is necessary to enable individualized and 
contextualized filtering of the vast amount of information. We dissected CAD-models 
and spread sheets to develop information models to serve as a foundation for graph 
visualization. Five types of relations between the constituents were identified: “Part-
Of”, “Kind-Of”, “Connection”, “Mathematical” and “Spatial”. Two algorithms were 
developed to travers CAD-models and spread sheets to retrieve graphs representing the 
information stored within them. Two filters were used to filter the resulting graphs to 
identify design parameters and the logical model of the product model at hand. These 
steps are taken to enable manufacturing companies to master the complexity of their 
product families. 
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