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Abstract. Background: Tagging text data with codes representing biomedical 
concepts plays an important role in medical data management and analysis. A 
problem occurs if there are ambiguous words linked to several concepts. Objectives 
and Methods: This study aims at investigating word sense disambiguation based on 
word embedding and recurrent convolutional neural networks. The study focuses on 
terms mapped to multiple concepts of the Unified Medical Language System 
(UMLS). Results: We created 20 text processing pipelines trained on a subset of the 
MeSH Word Sense Disambiguation (MSH WSD) data set, each pipeline 
disambiguating the sense of one word. The pipelines were then tested on a disjoint 
subset of MSH WSD data. Most pipelines achieved good or even excellent results 
(70% of the pipelines achieved at least 90% accuracy, 40% achieved at least 98% 
accuracy). One poor-performing outlier was detected. Conclusion: The proposed 
approach can serve as a basis for an up-scaled system combining pipelines for many 
ambiguous words. The methods used here recently proved very successful in other 
fields of text understanding and can be expected to scale-up with improved 
availability of training data. 
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1. Introduction 

Coding of medical terms from full text data is a crucial prerequisite for medical data 

management in clinical research and in patient care as well. Scientific publications, for 

instance, are indexed by controlled keywords (e.g. the Medical Subject Headings used 

by PubMed). Moreover, full text entries of patient records are processed and further 

analyzed applying automatic entity recognition. In all these cases medical terms or 

phrases used in a given text are assigned codes/controlled vocabulary representing the 

biomedical concept behind these expressions. An obvious and well-known problem is 

that biomedical texts often contain ambiguous abbreviations and words. I.e. single 

expressions denote different concepts (homonymity) and, therefore, need to be assigned 

different codes depending on the context. A common example is the term cold, which 

may be an adjective describing the temperature, a noun referring to the common cold, or 

the acronym for the Chronic Obstructive Lung Disease (COLD). 

Word sense disambiguation (WSD) aims at inferring the correct meaning of a given 

term depending on the surrounding text [1]. WSD (re-)establishes a functional mapping 

between terms (plus surrounding text) and concepts. 
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The Unified Medical Language System (UMLS) Metathesaurus was implemented 

to enable a terminological cross-walk between different medical terminology systems. 

Entries of the different vocabularies are assigned UMLS Concept Identifiers (CUI) 

representing the unique concept. The UMLS also captures the ambiguities of medical 

language by assigning more than one CUI to a given term. The level 0 subset of the 

UMLS 2016 version contains 78,918 different, ambiguous terms in its ambiguity index 

(AMBIGLUI). 

While the UMLS was adopted to coding tasks soon after its first implementation a 

seminal approach by Rindflesch and Aronson considered disambiguation concerning 

UMLS Metathesaurus concepts [2]. Their rule-based system heavily depends on the 

UMLS semantic network.  

The authors of [3] and [4] describe the use of statistical learning approaches for the 

same purpose. However, the focus of both studies lay on the automatic creation of a 

corpus for training and evaluation of machine learning methods for WSD. A similar goal 

was pursued by Stevenson et al. [5]. This focus also shows the importance of labeled 

training data for supervised learning systems.  

Knowledge-based or graph-based methods like Journal Descriptor Indexing and 

Machine Readable Dictionary, neither of both depending on supervised training, are 

addressed in [6,7].  

In 2011 a benchmark test set, the MeSH Word Sense Disambiguation (MSH WSD) 

data set, was published by Jimeno-Yepes et al. for the evaluation of WSD systems in the 

biomedical domai [8]. An evaluation of a Naïve Bayes approach for WSD using this data 

set was conducted by Plaza et al. [6]. 

Our investigations address the use of more recent supervised machine learning 

approaches for WSD in biomedicine. Most recently deep learning techniques, namely 

convolutional neural networks, have achieved striking success in several areas of natural 

language processing, such as machine translation [9] or speaker-independent speech 

recognition [10]. Word vector embedding and (recurrent) convolutional neural network, 

have proved very effective in the task of text classification in general [11]. Thus, 

systematic investigation of similar approaches in the field of medical WSD seemed 

relevant. 

1.1. Aim of The Study 

This study aimed at evaluating the use of word embedding, hereinafter also referred to 

as vector representation of words, and recurrent convolutional neural networks for WSD 

in the biomedical domain. More precisely, we investigated the accuracy achieved by that 

approach on the task of assigning the correct UMLS Metathesaurus concept (CUI) to an 

ambiguous word given its context, i.e. the text surrounding the word. The evaluation was 

based on a subset (strictly separated from the training data subset) of the MSH WSD data 

mentioned above.  

2. Methods 

The proposed method adopts vector representation of words introduced by Quoc and 

Mikolov [12] and recurrent convolutional neural networks (RCNN) for text classification 
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presented by Lai et al. [13]. Both methods factor the context of words into the 

computation and, thus, keep the most important information needed for disambiguation 

[14]. A separate text processing pipeline is established for each word to be disambiguated. 

All these pipelines share the same preprocessing unit followed by an RCNN specialized 

for a single word (compare Figure 1). First, the preprocessing unit transforms a given 

input text containing the corresponding word into vector representations. Subsequently, 

these vectors are processed by the RCNN to estimate the correct sense in this context.  

2.1. Vector Representation of Words 

Neural Networks rely on numeric input vectors. Hence, a text must be preprocessed and 

transformed into such vectors. The most common methods (bag-of-words or bag-of-n-

grams) lead to high dimensional and sparse representations while comprising only little 

semantic or contextual information (see the argumentation in [12]). In contrast, Quoc 

and Mikolov introduced word representations of low dimensionality preserving some 

semantic information [12] by mapping semantically similar words to vector 

representations which are close to each other in the vector space. The version of this 

approach used for our study is described in the following: 

Let � denote the number of paragraphs in the training corpus while ��  labels the 

number of words in the �th paragraph. The �th word in the �th paragraph is described by 

��,� while �� labels the whole �th paragraph, and k represents (half) the size of a context 

frame of preceding and following words. The training task is to maximize (Equation 1) 
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The conditional probabilities P are estimated by softmax regression. At first, for every 

input ��,���, … , ��,���, ��,���, … , ��,���, ��  the following is computed (Equation 2) 
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For this purpose, the columns of � that correspond to ��,���, … , ��,���, ��,���, … , ��,���

and the column of �  that corresponds to ��  are extracted and summed up. This is 

abbreviated by the function � in Eq. (1). The sum is linearly transformed by the weight 

matrix � and then translated by �. The resulting vector 
 has as many dimensions as 

there are diverse words in the training paragraphs. Assume that 
��� denotes the entry 

of 
 corresponding to the word	�. The required probability can then be estimated as 

follows (Equation 3): 
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Figure 1. Example pipeline for the WSD of “cold” 
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The parameters �,�, �,�  are learned via stochastic gradient descent and 

backpropagation. The trained network predicts a word � given the vector representations 

of its context words and of the paragraph it occurs in. The columns of � contain the 

vector representations of all words that are present in the training corpus. These 

representations are then used as inputs for the RCNNs.  

2.2. Recurrent Convolutional Neural Networks 

Disambiguation is performed by RCNNs specific for each pipeline. The RCNN proposed 

by Lai et al. was developed for text classification in general [13]. In our case, we use a 

slightly modified model for the disambiguation of words. In contrast to the original 

model, word embedding is done as described above. An RCNN consists of a 

convolutional layer with a recurrent structure, a single layer with perceptrons and a max-

pooling layer followed by a final softmax layer. The input of such a network is composed 

of an arbitrary number of vector representations, each having fixed dimensionality. Thus, 

the input texts passed to the pipeline can have an arbitrary number of words. Assume 

that the overall input is a document 	�� = 	��, … ,�� containing the word the RCNN is 

specialized for. During preprocessing �� is transposed into a list of vectors 	
��� =	(��), … , 	(��), which is then transferred to the RCNN. By the initial convolutional 

layer the following two multidimensional functions are evaluated for every �� ∈ ��, 

where �  denotes the elementwise sigmoid function and ���,(��),(	),(�	)  are 

matrices (Equations 4 and 5). 

 ��
��� = �(��� ⋅ ��
��
�� + ���� ⋅ 	(��
�)) (4) �	
��� = �(�	� ⋅ �	
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The function �� returns a vector representing the context defined by all words left to the 

current one. Analogously, �	  computes the right context. For the first input word we 

define ��
��� as a variable vector learned in addition to the other parameters. The same 

holds true for �	
��� corresponding to the last word. The whole text is considered during 

the context computation irrespectively of its length, which is a major advantage of a 

recurrent convolutional layer over a conventional convolutional layer (e.g. the approach 

used in [11]). 

The next layer contains as many simple perceptrons as there are vector 

representatives. Its �th perceptron computes (Equation 6) 

 

����� = 	 ���ℎ(��� ⋅ 	���
���	
����	
���� + ����) (6) 

where (�),�(�)are further parameters, ���	
�
� denotes the concatenation of ��, ��,��, and 

tanh is evaluated element wise. The subsequent max-pooling layer compresses its input 

consisting of arbitrary many vectors ��(�) to a vector  ����	 of fixed length by applying 

the max function to each vector component. The input to the softmax layer is then given 

by ���� = ������� + ����. This is transformed into to the overall output by using the 

softmax regression, which estimates the probability distribution of the ambiguous 

meanings conditioned on the input document ��, … ,�� , or rather, on its vector 

representations 	(��), … , 	(��). 
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Figure 2. Line of action for the experiment 

 

Formally, let �:� ����, ����, ����, �����, �����, ������,����, ����, ����, ���� ,	 
then the probabilities are estimated by (Equation 7) 
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		 for all possible meanings ' (7) 

 

Training of each RCNN aims at maximizing the log-likelihood by adapting the 

elements of �, i.e. at maximizing (Equation 8) 
 

�
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Similar to the word embedding network, maximization is also achieved by stochastic 

gradient descent and backpropagation.  

2.3. Experiment 

All pipelines used for our studies are based on the same architecture. Documents 

containing an ambiguous word serve as inputs. The output of a pipeline gives an 

estimation of the word’s correct meaning. Figure 2 depicts the line of action pursued for 

the experiment. The preprocessing unit is the same for all pipelines and was implemented 

as described in section 2.1. The training corpus for the word embedding was iterated over 

for 5 times with a window size of 10 words (' � 5) resulting in 300-dimensional word 

vectors. 

While preserving their basic structure (see 2.2.) the trained RCNNs differ from 

pipeline to pipeline. While the number of columns of ���� is constant for all, the number 

of rows equals the count of meanings of the corresponding word. In our case, the number 

of rows is fixed by the number of UMLS concepts linked to a given ambiguous word. 

The main difference, however, lies in the values of the learned parameters �. 

2.3.1. Data Set for Training and Evaluation 

For the supervised training and the evaluation we needed a set of ambiguous words 

within context paragraphs each assigned to the UMLS concept indicating the correct 

meaning.  

Training of the preprocessing unit for word embedding was based on the concept 

definition texts of the 2016AB full release of the UMLS Metathesaurus [15]. The training 

of the RCNNs and the evaluation of the whole pipelines were based on the MSH WSD 

introduced by Jimeno-Yepes et al. [8] as a benchmarking data set. MSH WSD contains 

203 ambiguous abbreviations and terms. For every such entity numerous MEDLINE 

citations containing the term (or abbreviation) are composed in one document. Moreover, 

a UMLS concept is assigned to each citation, which unambiguously defines the sense of 

the word in this context.  
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20 of these documents were used to train and evaluate 20 of the previously described 

RCNNs. They were selected by taking the first 20 documents returned by the function 

os.listdir() traversing the full MSH WSD directory. According to the documentation this 

function returns all elements of a given directory in an arbitrary order. Thus, this subset 

can be considered pseudo-random. For all 20 cases the list of corresponding MEDLINE 

citations was divided into a training set containing about 75% of the data and a disjoint 

test set consisting of the rest. In both subsets the numbers of all meanings were balanced 

as they are in the original set [16]. Each RCNN was trained for 1000 iterations using a 

learning rate of 0.01. Parameters were initialized randomly based on a truncated normal 

distribution (mean: 0, stddev:	0.1, interval: [−0.2, 0.2]). 

2.3.2. Technical Platform 

Word embedding and RCNN training were computed on a Linux workstation (Intel Xeon 

E5-1650 Processor, 6-Core, 3.5 GHz; 64GB memory) using CUDA on NVIDIA GPUs 

(NVIDIA Quadro M4000, 1664 CUDA cores, 8GB memory). The word embedding was 

trained using the software framework Gensim2 whereas the RCNN implementation is 

based on TensorFlow3. 

3.  Results 

The section presents key figures of the RCNN training process for the individual 

pipelines - each identified by the disambiguated word. Accuracy with respect to the test 

set has been measured after every 10th training iteration. An overview of these 

measurements is given in Figure 3.  

Final accuracies after 1000 iterations are summarized in Table 1. 8 out of 20 

pipelines (i.e. 40%) achieved an accuracy of 98% and above. A total of 14 out of 20 

pipelines (i.e. 70%) achieved an accuracy of at least 90%. The average final accuracy of 

all pipelines is about 91%. 

4. Discussion and Outlook 

Most of the pipelines showed good or excellent performance. A clear outlier is the 

“Phosphorylase”-network. Its bad performance may be explained by considering the two 

possible meanings of the word. On the one hand, it refers to a class of enzymes and on 

the other hand, it describes a special enzyme of this class. Thus, one concept is enclosed 

by the other one (hyponymy), which makes disambiguation extremely hard. 

A comparison to the Naïve Bayes approach described by Plaza et al. [6] is 

problematic. The Bayesian method was tested against the full MSH WSD set, but the 

outline of the experiment raises the suspicion that the training set overlapped the test set, 

which - if proved correct - would forbid to estimate the real accuracy of the proposed 

method by the measured one. In order to avoid these complications, we divided the MSH 

WSD data creating disjoint training and test sets. 
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Figure 3. Summary of the intermediate accuracies 

 

Using a general approach independent of structure or content of the UMLS promises 

future applicability to a broader field of biomedical content indexing.  

The MSH WSD data set used for training and evaluation was assembled automatically 

[8]. As the labeling of data was not supervised by humans, mislabelling may obfuscate 

the training process. Therefore, future training data should be assembled or checked 

manually to avoid wrong training behaviors. 

Our next aim is to dynamically combine trained RCNNs to a single general 

processing pipeline. The system will decide which RCNN to use for disambiguation of 

a given term marked as ambiguous by the UMLS. The advantage of such a system will 

be that new RCNNs can be added during usage. Thus, the system can continuously 
 

Table 1. Summary of the final accuracies 

Network Number of meanings Final Accuracy 

AA 2 96% 
Astragalus 2 100% 

CDR 2 97% 
Cilia 2 82% 
CNS 2 98% 
CP 3 97% 
dC 2 98% 

EMS 2 98% 
ERUPTION 2 100% 

FAS 2 100% 
Ganglion 2 90% 

HCl 2 100% 
INDO 2 87% 

lymphogranulomatosis 2 83% 
MCC 2 97% 
PAC 2 94% 

Phosphorus 2 78% 
Phosphorylase 2 52% 

TMP 2 81% 
TNT 2 98% 
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be adapted to broader WSD tasks. Feasibility of combined systems covering relevant 

parts of terminology is plausible based on the fact that only approximately 4 MB of 

checkpoint data are required to specify a trained RCNN as used in our approach. A 

general solution to WSD may require solutions for the most difficult problems of 

artificial intelligence [17]. However, a combination of solutions for small sub-problems 

is a good temporary solution in the meantime. The deep learning methods used by our 

approach recently proved very successful in other fields of text understanding and can 

be expected to scale-up with improved availability of training data. 
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