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Abstract. While pharmacogenomic testing combined with clinical decision support 
has the potential to increase the safety and efficacy of medical treatments, the intake 
of multiple prescription drugs can – if not sufficiently addressed by decision support 
solutions – impair the effectiveness of such interventions by modulating the capacity 
of precisely those enzymes whose function pharmacogenomic tests try to predict. 
We quantified the potential extent of such drug-mediated mismatches between 
genotype-derived phenotypes and real phenotypes, commonly called 
“phenoconversion”, by screening claims data from 1,587,829 Austrian health 
insurance holders of the years 2006 and 2007 for concomitant prescriptions of drugs 
that can be dosed based on pharmacogenomics, and drugs that modulate enzyme 
activity. In total, 232,398 such prescription overlaps were detected, of which more 
than half (54.6%) could be attributed to co-prescriptions of moderate or strong 
modulators. Our results indicate that prescription drug-mediated phenoconversion 
is not uncommon, and should therefore be adequately reflected in decision support 
solutions by integrating algorithms to detect potential gene-drug-drug interactions. 
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1. Introduction 

Pharmacogenomic (PGx) testing has—especially when combined with efficient clinical 
decision support (CDS)—the potential to improve the safety and efficacy of medical 
treatments by screening patients for genetic variants known to impact drug response and 
thereupon adjusting drug and dosage selection.  

While there is sound evidence on the importance of PGx variants with regard to 
therapeutic response for a wide range of commonly used medications, it is equally well-
known that these variants can oftentimes only explain a varying fraction of the actual 
individual differences in drug response [1-3]. Besides comorbidities, e.g. liver disease, 
renal impairment or inflammatory conditions, several other factors, such as smoking 
status, food or medication intake can modulate a patient’s response to certain drugs [4,5]. 

Especially, both the intake of prescription and over-the-counter drugs can impact 
drug efficacy on the pharmacokinetic level, e.g. at the level of drug metabolizing 
enzymes or drug transporters, thereby amplifying or attenuating differences in drug 
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response that are caused by pharmacogenetic variants [6]. The effects of these gene-drug-
drug interactions (GDDI) are often subsumed under the term “phenoconversion” to 
account for a mismatch between the “phenotype” that was predicted merely based on a 
patient’s PGx results and his real phenotype that may be influenced by many more factors. 

If not sufficiently addressed by CDS algorithms, prescription-drug mediated 
phenoconversion has the potential to undermine the power of PGx CDS interventions in 
finding the right dosage for the individual patients. While these important limitations of 
PGx-guided prescribing are commonly acknowledged, the actual extent of prescription-
drug mediated phenoconversion remains unclear. In this study, we aimed to assess the 
frequency of potential GDDIs in the Austrian population by screening claims data from 
four federal provinces for concomitant use of PGx drugs (i.e. drugs that can be dosed 
based on PGx guidelines) and drugs that are known to act as inhibitors or inducers of the 
affected enzyme or transporter. 

2. Methods 

2.1. Compiling the list of relevant drugs and genes  

2.1.1. Drugs and genes relevant for pharmacogenomics-guided prescribing 

A list of drug substances and genes for which actionable PGx-based therapeutic 
recommendations have been developed by two renowned consortia, the Clinical 
Pharmacogenetics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics 
Working Group (DPWG), served as a basis for this analysis. At the time of writing, such 
recommendations were available for 70 drugs across 14 genes [7,8]. Genes for which no 
relevant inducers and inhibitors could be determined based on the sources described in 
the next section were excluded. The final list comprised of 65 drug substances affected 
by one or more of following seven genes: CYP2D6, CYP2C19, CYP2C9, CYP3A5, 
TPMT, UGT1A1 and SLCO1B1. 

2.1.2. Inducers and inhibitors 

For each gene considered in this analysis, a comprehensive list of well-established 
inducers and inhibitors was compiled based on two sources: The Flockhart Cytochrome 
P450 Drug Interaction Table of the Indiana University and the compendium “The Top 
100 Drug Interactions” by Hansten and Horn (2015 edition) [9,10]. 

The Flockhart Cytochrome P450 Drug Interaction Table assigns inhibitors and 
inducers to one of the following four categories based on the strength of their 
pharmacokinetic effect: strong, moderate, weak and unclassified. For example, a strong 
inhibitor is defined as one that causes a more than 5-fold increase in the plasma area 
under the curve value, or more than 80% decrease in clearance. The Hansten and Horn 
compendium differentiates only between inhibitors or weak inhibitors, and inducers or 
weak inducers.  

For this study, the following consistent categorization scheme was used: For all 
substances covered by the Flockhart Cytochrome P450 Drug Interaction Table, the 
assignments to the categories strong, moderate and weak were adopted. Drug substances 
that were only listed in the Hansten and Horn compendium and were not marked by a 
“weak” label were subsumed under the “moderate” category. Drug substances classified 
as “weak” by Hansten and Horn were assigned to the “weak” category. 
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Table 1: Overview of the number of PGx drugs, inhibitors and inducers included in the analysis, broken down 
by gene. 

Gene PGx drug Inhibitor Inducer Total 
CYP3A5 1 64 30 95 
CYP2D6 27 60 2 89 
CYP2C9 8 37 16 61 
CYP2C19 18 19 12 49 
SLCO1B1 1 12 0 13 
UGT1A1 1 5 2 8 
TPMT 3 5 0 8 

2.1.3. Compiling the list of corresponding ATC codes 

In total, 55 distinct PGx drugs, 157 inhibitors and 36 inducers associated with one or 
more of seven different genes were included in the analysis. Several of these drugs could 
be assigned to more than one category (e.g. PGx drug and inhibitor), resulting in 4,440 
distinct interaction pairs. Table 1 gives an overview of the number of PGx drugs, 
inhibitors and inducers, broken down by gene. 

To identify claims referring to these drugs within the claims database, for each 
substance, corresponding ATC codes were extracted from the ATC/DDD Index 2016 of 
the WHO Collaborating Centre for Drug Statistics Methodology [11]. Topical 
preparations were excluded due to their limited systemic effects. 

2.2. Quantifying the potential extent of prescription drug-mediated phenoconversion  

2.2.1. Health claims data source 

Statistics on the frequency of concomitant prescriptions of the 4,440 interaction pairs 
were queried from the General Approach for Patient-oriented Outpatient-based 
Diagnosis Related Groups (GAP-DRG) database operated by the Main Association of 
Austrian Social Security Institutions. This database contains pseudonymized health 
claims data from insurance holders of Austrian public health insurances for the years 
2006 and 2007. 

2.2.2. Determining the frequency of concomitant prescriptions of PGx drugs and 
inhibitors or inducers 

For all claims, the GAP-DRG database calculates and captures the hypothetical duration 
of drug intake based on the Defined Daily Dose (DDD) of the drug, the prescribed 
package size and the quantity of the active ingredient. DDD is a standardized measure 
defined by the World Health Organization (WHO) Collaborating Centre for Drug 
Statistics Methodology that captures the “assumed average maintenance dose per day 
for a drug used for its main indication in adults” [11].  

For this study, prescriptions of PGx drugs and inhibitors / inducers were counted as 
concomitant prescriptions whenever an overlap of the hypothetical duration of intakes 
between these drugs was detected. This approach requires information on the exact date 
of prescription filling, which was not consistently available for all health insurance funds 
covered by the database. We therefore had to limit our analysis to four federal insurance 
funds for which these date specifications were captured. 

Statistics on concomitant prescriptions of the interaction pairs of interest were 
queried from the GAP-DRG database via SQL statements and transferred to MS Excel 
for further analysis. 
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Table 2: Number of concomitant prescriptions of PGx drugs with inducers or inhibitors within the two-year 
observation period from 2006 to 2007, broken down by gene and level of inhibition or induction.  

Gene Strong Moderate Weak Unclassified Total 
CYP2D6 16,620 34,963 37,356 53,737 142,676 
CYP2C19 N/A 58,782 N/A 2,157 60,939 
CYP2C9 317 8,117 5,934 5,537 19,905 
SLCO1B1 N/A 7,377 N/A N/A 7,377 
TPMT N/A N/A N/A 752 752 
CYP3A5 61 663 17 8 749 
UGT1A1 N/A N/A N/A 0 0 
Total 16,998 109,902 43,307 62,191 232,398 

3. Results 

3.1. Study population 

Our study population consisted of 1,587,829 Austrian insurance holders from four 
federal provinces and health insurance funds (“Gebietskrankenkasse Niederösterreich”, 
“Gebietskrankenkasse Kärnten”, “Gebietskrankenkasse Salzburg” and 
“Betriebskrankenkasse Neusiedler”). In total, 393,476,104 prescriptions issued in the 
years 2006 and 2007 were screened for overlapping prescriptions of PGx drugs and 
inhibitors or inducers of the respective enzyme or transporter. 928,309 patients (58.8% 
of the study population) received at least one PGx drug in the observed time frame. 

3.2. Frequency of concomitant prescriptions of PGx drugs with inducers or inhibitors 
of the respective enzyme or transporter 

For 1,124 out of the 4,440 included interaction pairs, our analysis revealed at least one 
case of a concomitant prescription of a PGx drug with an inhibitor or inducer in the 
observed time frame. In sum, our analysis detected a total of 232,398 such cases, 
implying that, on average, every fourth patient who was treated with a PGx drug was 
concomitantly prescribed an inhibitor or inducer of the respective enzyme or transporter.  

More than half of those cases could be attributed to concomitant prescriptions of 
PGx drugs with moderate (47.3%) or strong (7.3%) inhibitors or inducers. Concomitant 
prescriptions of PGx drugs with weak or unclassified inhibitors or inducers accounted 
for 18.6% and 26.8% of all cases, respectively.  

As can be seen from Table 2, interaction pairs associated with the CYP2D6 gene 
made up more than half of all detected cases, followed by CYP2C19 which accounted 
for more than a quarter of the overall number of cases. 

3.3. Most prescribed interaction pairs and modulator drugs 

Table 3 shows the ten most prescribed interaction pairs together with the affected gene 
and the level of inhibition or induction that is potentially caused by the agent. 
Antidepressants with moderate or weak inhibiting properties (i.e. citalopram, 
escitalopram, fluoxetine) were strongly represented among the most prescribed pairs.  

Similarly, the ten most prescribed pairs of PGx drugs with strong inhibitors or 
inducers almost exclusively consisted of combinations of the antidepressants paroxetine 
and fluoxetine with other antidepressants or pain medication (see Table 4).  
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Table 3. Top 10 most prescribed pairs of PGx drugs and inducers or inhibitors 

Inhibitor / Inducer PGx drug Degree of inhibition / 
induction 

Gene Number of 
concomitant 
prescriptions 

Clarithromycin Simvastatin Moderate inhibition SLCO1B1 5,483 
Citalopram Tramadol Unclassified inhibition CYP2D6 5,111 
Dexamethasone Tramadol Unclassified induction CYP2D6 4,423 
Carvedilol Tramadol Moderate inhibition CYP2D6 4,339 
Omeprazole Citalopram Moderate inhibition CYP2C19 4,253 
Escitalopram Mirtazapine Weak inhibition CYP2D6 3,783 
Escitalopram Tramadol Weak inhibition CYP2D6 3,647 
Fluoxetine Pantoprazole Moderate inhibition CYP2C19 3,639 
Metoclopramide Tramadol Unclassified inhibition CYP2D6 3,459 
Citalopram Mirtazapine Unclassified inhibition CYP2D6 3,101 

 
An overview of the ten overall most co-prescribed drugs with inhibiting and/or 

inducing properties across all interaction pairs can be found in Table 5. 

4. Discussion 

While it is commonly acknowledged that the intake of multiple prescription drugs has 
the potential to weaken the significance of pharmacogenomic testing in predicting drug 
response, the actual extent of potential prescription-drug mediated phenoconversion 
remains unclear. This study aimed to address this gap by determining the frequency of 
concomitant prescription of drugs that can be subject to PGx-based dosing, and drugs 
that have the potential to modulate the activity of precisely those enzymes and 
transporters whose function PGx test results try to predict. 

Our results indicate that, on average, every fourth person with a prescription of a 
PGx drug is concomitantly treated with an inhibitor or inducer of the respective enzyme 
or transporter, which—if not adequately addressed by decision support algorithms—has 
the potential to dilute the significance of PGx test results in finding the right dosage for 
the individual patient. 

While both the development of clinical decision support solutions (CDS) for PGx 
testing and the optimization of CDS for drug-drug-interactions (DDI) have been major 
research focuses in the past years, far too little attention has been paid to the intersection 
between those two fields, i.e. gene-drug-drug interactions [12-16]. In light of the 
progressing efforts to integrate PGx in clinical routine, it will be essential to ensure that  
 

Table 4. Top 10 most prescribed pairs of PGx drugs and strong inducers or inhibitors 

Inhibitor / Inducer PGx drug Degree of inhibition / 
induction 

Gene Number of 
concomitant 
prescriptions 

Paroxetine Tramadol Strong inhibition CYP2D6 1,808 
Paroxetine Mirtazapine Strong inhibition CYP2D6 1,563 
Fluoxetine Tramadol Strong inhibition CYP2D6 1,528 
Fluoxetine Mirtazapine Strong inhibition CYP2D6 1,153 
Paroxetine Metoprolol Strong inhibition CYP2D6 1,121 
Paroxetine Carvedilol Strong inhibition CYP2D6 897 
Fluoxetine Metoprolol Strong inhibition CYP2D6 840 
Paroxetine Amitriptyline Strong inhibition CYP2D6 752 
Paroxetine Risperidone Strong inhibition CYP2D6 693 
Fluoxetine Carvedilol Strong inhibition CYP2D6 671 
Fluoxetine Amitriptyline Strong inhibition CYP2D6 648 
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Table 5. Top 5 most co-prescribed drugs with inhibiting and/or inducing properties 

Drug Number of concomitant prescriptions 
Citalopram 8,212 
Escitalopram 7,430 
Clarithromycin 5,483 
Dexamethasone 4,423 
Carvedilol 4,339 
Omeprazole 4,253 
Fluoxetine 3,639 
Metoclopramide 3,459 
Amiodarone 3,081 
Sertraline 3,033 

 
important GDDI are adequately represented in clinical decision support solutions to call 
the healthcare provider’s attention to their significance for PGx-based prescribing. 

A limitation of our study lies in the fact that the duration of medication intake 
captured by GAP-DRG are inferred based on measures such as DDDs and package size, 
which do not necessarily reflect the real treatment duration. However, given that a 
sizeable fraction of the drugs considered in this analysis are primarily used for long-term 
treatment of chronic conditions, an overlap in the real intake duration can be assumed in 
the majority of cases.  

Furthermore, the results we present here are based on a retrospective analysis of 
claims data from four Austrian federal provinces of the years 2006 and 2007. Prescribing 
practices may vary between different regions and countries, and change over time, which 
makes our findings less generalizable to other healthcare settings or later prescription 
periods. More recent claims data from the years 2008 to 2011 would have been available 
via the GAP-DRG2 database. However, using this dataset for our analysis would have 
yielded even more regionally restricted results since only the federal province of Lower 
Austria is covered. 

This study emphasizes the importance of addressing GDDIs in PGx CDS systems 
by showing that co-prescriptions of PGx drugs with inhibitor and inducer drugs are not 
uncommon. For our analysis, we used a simple categorization scheme to grade the degree 
of inhibition or induction a drug potentially causes. While such schemes could, in a first 
step, be helpful in compiling a list of high priority GDDIs for use by PGx CDS systems 
to alert medical professionals to the risk of potential interactions, predicting the actual 
effects on a patient’s drug response phenotype in the presence of pharmacogenetic 
variants will heavily rely on the availability of more detailed pharmacometric models 
which take into account the involved PGx variants, drug substances and 
inhibition/induction mechanisms. 
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