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Abstract. Sequencing data will become widely available in clinical practice within 
the near future. Uptake of sequence data is currently being stimulated within the UK 
through the government-funded 100,000 genomes project (Genomics England), 
with many similar initiatives being planned and supported internationally. The 
analysis of the large volumes of data derived from sequencing programmes poses a 
major challenge for data analysis. In this paper we outline progress we have made 
in the development of predictors for estimating the pathogenic impact of single 
nucleotide variants, indels and haploinsufficiency in the human genome. The 
accuracy of these methods is enhanced through the development of disease-specific 
predictors, trained on appropriate data, and used within a specific disease context. 
We outline current research on the development of disease-specific predictors, 
specifically in the context of cancer research. 
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1. Introduction 

Substantial improvements in sequencing technologies, and rapidly falling costs, will 
result in the widespread use of DNA sequence data within clinical practice. This trend is 
being encouraged within the UK through the Genomics England (100,000 genomes) 
project. Interpretation of these datasets poses challenges, from the size and complexity 
of the data through to the necessary linkage of DNA sequence data with other types of 
data, such as clinical covariates. For the analysis of DNA sequence data, a crucial 
challenge is the ability to distinguish which genetic variants are functional in disease, 
against a background of many disease-neutral variants. Accurate understanding of which 
genetic variants are pathogenic will improve our understanding of the molecular 
mechanisms underlying human disease and our ability to provide targeted therapies. 

In recent research we have developed a variety of methods for predicting the 
pathogenic impact of genetic variants. In Shihab et al (2015) [1] we proposed an 
integrative classifier for predicting whether single nucleotide variants (SNVs) are 

                                                           
1  Corresponding author, Intelligent Systems Laboratory, University of Bristol, Bristol, BS1 1UB, 

U.K.; E-mail: mark.rogers@bristol.ac.uk 

Informatics for Health: Connected Citizen-Led Wellness and Population Health
R. Randell et al. (Eds.)
© 2017 European Federation for Medical Informatics (EFMI) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-753-5-91

91



functional in human disease, or neutral (for both coding or non-coding regions of the 
human genome). A number of sources of data are relevant to predicting if a SNV is 
functional in disease or is neutral. Consequently we used a variety of feature groups, or 
sources of data, which could be informative. In the construction of these prediction 
methods we used sequence conservation across species, histone modification (ChIP-Seq 
data), transcription factor binding site data, open chromatin data (DNase-Seq peak calls 
across cell lines from ENCODE), GC content, genome segmentation, and annotations 
describing DNA footprints across cell types (from ENCODE [3]). Thus, for example, 
sequence conservation across species proved to be a highly informative source: if a SNV 
occurs in a genomic region which is highly conserved across species it is much more 
likely to be functional in disease relative to a SNV which occurs in a region with high 
variability across species.. 

In our study, Shihab et al (2015) [1], we therefore used an algorithm-based approach 
capable of data integration i.e. the algorithm uses and learns to weight these different 
types of data, according to relative informativeness. In this study we used a specific 
approach to data integration called multiple kernel learning [2], though other data 
integration methods can be used. The method was called FATHMM-MKL (see 
fathmm.biocompute.org.uk for the prediction tool). Aside from giving a predicted label 
(pathogenic or neutral), the method also assigns a confidence measure to this label. At 
the default threshold on this confidence measure, FATHMM-MKL has a balanced test 
accuracy of 89.7%, with a false-positive rate of 3.8%. With a higher cutoff threshold on 
the confidence, the test accuracy slightly drops to 88.0% but with the false-positive rate 
dropping to 1.2%. A number of other groups have also proposed predictors for estimating 
the pathogenic impact of SNVs [4,5,6,7,8]. 

We have extended this line of investigation in a variety of directions. Small 
insertions and deletions (indels) can also have a significant influence in human genetic 
disease. In terms of relative frequency, indels are second only to SNVs as mutations. To 
date, classifiers for predicting the functional impact of indels have been restricted to their 
effect in the human exome (e.g. [9,10,11,12]). However, non-coding regions also contain 
many functional elements. Indeed, the vast majority of catalogued SNV-trait associations 
fall within non-coding regions of the human genome [13]. We have proposed an 
integrative predictor for estimating the pathogenic impact of indels in non-coding regions 
of the human genome [14]: the method is called FATHMM-indel and is available via the 
Web (indels.biocompute.org.uk). Using nested cross validation, this classifier achieves 
a balanced accuracy of 86%. In other work [15] we have proposed a Genome Tolerance 
Browser to visualise the possible pathogenic impact of SNVs in the genome (this tool is 
available at gtb.biocompute.org.uk). A further project has been to develop a state-of-the-
art predictor, called HiPred, for estimating the effect of haploinsufficiency [16]. Cells in 
the human body are diploid, they contain two complete sets of chromosomes, one from 
each parent. Haploinsufficiency occurs if there is only one functional copy of a gene, and 
this single copy does not produce a sufficient amount of a gene product, resulting in a 
disease trait. 

2. Disease-specific prediction 

The predictors for SNVs and indels have a high accuracy in many simple disease contexts 
but are still not sufficiently accurate when applied to more complex multifactorial 
diseases. For a complex disease, such as cancer, oncogenesis is typically driven by a 
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combination of disease-enabling genetic variants. For construction of a prediction tool, 
this creates a label-dependency problem during classifier training: a single point 
mutation could be labelled pathogenic or neutral, depending on the labels at other 
locations in the cancer genome. In any case, training a classifier with domain-specific 
data, such as sequence data exclusively from a particular type of cancer, would likely 
offer improved accuracy. Indeed, our previous studies have suggested that disease-
specific predictors are more accurate than generic predictors [18]. 

With this motivation we are devising cancer-specific predictors, for predicting the 
oncogenic impact of single point mutations. As for FATHMM-MKL, these predictors 
are trained using a variety of data sources falling into three main categories: genomic 
(genomic features include GC content, sequence spectra, repeat regions and measures of 
region uniqueness), evolutionary (as for FATHMM-MKL, evolutionary features include 
a comprehensive set of conservation-based measures) and consequences (for coding 
regions only: data derived from the Variant Effect Predictor [19] and other sources). To 
train the classifier for handling single point somatic mutations, we used high recurrence 
rate SNVs from the COSMIC cancer database [20] as the positives, with negatives 
derived from the  1000 Genomes project [21]. We achieved state-of-the-art performance 
with a substantial gain over competitors (Figure 1, left). This predictor is called CScape 
and is available via the Web (cscape.biocompute.org.uk) [22].  Evaluated via leave-one-
chromosome-out cross-validation (LOCO-CV), the approximately balanced test 
accuracy is 72.3% in coding regions and  62.9% in non-coding regions. As with 
FATHMM-MKL we also devised a confidence measure associated with the predicted 
class label. 

Though promising, the test accuracy of the resultant classifiers remains inadequate 
for use by cancer researchers. However, if we restrict prediction to the highest confidence 
instances then it is possible to achieve 91.7% test accuracy (with LOCO-CV, coding 
regions only). Given a positive predictive value (PPV) of 0.78, and a large number of 
true positives, this test accuracy is not achieved by predominant accurate prediction of 
negatives (non-oncogenic single point mutations). This strong performance comes at the 
expense of yielding predictions for just 17.7% of coding region nucleotide positions 
(Figure 1, right). Nevertheless, this becomes an experimentally usable level of accuracy. 

However, this classifier (cscape.biocompute.org.uk) still remains generic, in that it 
is trained on COSMIC data [20], derived from a variety of cancer types. Thus further 
improvement can be achieved by developing predictors trained on, and specific to, 
individual types of cancer. As an example, using data from the Cancer Genome Atlas 
[22] and the International Cancer Genome Consortium [23] we have derived specialist 
predictors for particular types of cancer. Thus for a specialised breast cancer predictor 
(CScape-brca), we can achieve a baseline predictor (coding regions, all nucleotide 
positions) with approximate 80% accuracy and capable of a greater test accuracy, if 
restricted to higher confidence predictions. 
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Figure 1. Left: ROC curves for a comparison of the proposed classifier (CScape) for predictions in the 
coding regions of the cancer genome, against alternative methods. Right: the solid curve gives the test 

accuracy (approximately balanced), the dashed curve gives the proportion of nucleotide positions with high 
enough confidence for prediction at the given level of test accuracy: this dashed curve is derived from test 

data, the 12.1% figure quoted in the text is for whole-genome prediction (coding regions). 

3. Discussion 

These new methods indicate that usable levels of accuracy can be achieved for predicting 
the pathogenic impact of genetic variants. Aside from predicting possible new drug 
targets, the refined insights from these tools could assist in establishing subtypes of 
disease, hence improving personalised approaches to therapy and predicting an 
individual’s response to a drug. There is the prospect that these methods can be further 
enhanced through the incorporation of additional sources of data. Aside from disease-
specific prediction, another avenue for investigation would be region-specific prediction, 
for example, dedicated predictors for non-coding variants residing at or near splicing 
regions. We will report on these developments in later work. 
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