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Abstract. Archetype-based Electronic Health Record (EHR) systems using  generic 
reference models from e.g. openEHR, ISO 13606 or CIMI should be easy to update 
and reconfigure with new types (or versions) of data models or entries, ideally with 
very limited programming or manual database tweaking. Exploratory research (e.g. 
epidemiology) leading to ad-hoc querying on a population-wide scale can be a 
challenge in such environments. This publication describes implementation and test 
of an archetype-aware Dewey encoding optimization that can be used to produce 
such systems in environments supporting relational operations, e.g. RDBMs and 
distributed map-reduce frameworks like Hadoop. Initial testing was done using a 
nine-node 2.2 GHz quad-core Hadoop cluster querying a dataset consisting of 
targeted extracts from 4+ million real patient EHRs, query results with sub-minute 
response time were obtained. 
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1. Introduction 

The adoption of standardized “archetype”-based Electronic Health Record (EHR) 

systems is increasing globally. Such systems use a fixed reference model (from e.g. 
openEHR, ISO 13606 or CIMI) that provides basic building blocks that are then 

assembled and constrained (primarily by clinicians) into clinically relevant structures 

using modeling layers consisting of archetypes and templates [1]. This partly resembles 
how XML building blocks can be assembled and constrained by layers of schemas. 

“Archetyped” instance data, i.e. conforming to archetypes, templates and the 

corresponding reference model (RM), often form deep tree structures where path-based 

querying is useful for both single-patient and epidemiological multi-patient use cases.  

Existing deep tree storage and retrieval mechanisms (for example XML- and JSON-

databases) can be reused for archetype-based systems [2]. There are open source XML-

database solutions fully capable of handling single-patient use-cases for databases with 

millions of archetype-based records [3]. However, for good performance for large 

population epidemiological queries, other approaches or optimizations are needed [4]: 
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• If the queries are well known beforehand and regularly re-run, like for recurring 

statistical needs, then common solutions are a) to have database administrators 

(DBAs) create query-specific index optimizations or b) to export relevant parts 

to a data warehouse (OLAP) system.  

• In exploratory epidemiological research, on the other hand, where query results 

often lead to new questions, the delay caused by waiting for a DBA or other 

constrained (often human) resources can become a major bottleneck. Thus 

explorations of automated optimizations also handling ad-hoc population 

queries have been published [4]. In this publication we describe Dewey 
encoding as another method to add to the arsenal of solutions for these ad-hoc 
query use cases.  

Storage of archetype-based data can be implemented using various database approaches 

[2][3][4][5] but are often queried using the implementation-neutral AQL (Archetype 

Query Language) [6] that can be translated into the database's ”native” query language.  

Many kinds of tree-shaped data can be Dewey encoded and stored in many kinds of 

persistence solutions. This paper contributes an outline of how Dewey indexing can be 

customized by including archetype_node_id in the index paths in order to enhance 
performance when applied to openEHR models and associated AQL queries; non-
enhanced XML Dewey coding would instead store archetype_node_id as attribute+value. 
In our implementation we used Hadoop as a scalable persistence and query execution 

environment. Adapting the approach for other persistence platforms and non-XML-

formats should be rather straightforward. 

2. Background 

Based on the Dewey Decimal Classification [7], which was originally developed for 

general knowledge classification, Dewey order encoding is among the popular methods 

for encoding XML documents [8]. With Dewey order, each node in an XML tree is 

labeled with a vector (for example the string 1.8.3.1) representing the path from the root 

to the node following the rules: (1) The root is labeled as an empty string; and (2) For a 

non-root element u, label(u)=label(v).x, where u is the xth child of v. 
With the Dewey order encoding, each node in the XML tree is labeled with a distinct 

string. This enables Axis operations in an XPath-style query such as ::child, ::descendant 

and ::sibling to be simply formulated with common string operations. Based on the 

Dewey order coding, all the distinct paths of the underlying XML document can then be 

enumerated and to each path expression, the set of the corresponding nodes (in the form 

of Dewey encoding) is referred. The steps above are in fact the essential operations used 

in the so-called XML document shredding, with the ultimate goal of storing and querying 

the XML data in Relational Database Systems. 

3. Method  

Since the collection of all archetype-based data instances in an EHR system is a giant 

logical tree with paths, we follow the general routine of Dewey order encoding [8] to 

label all the nodes in the tree. One index table (pathindex in Figure 1) assigns a 
consecutive path id number to each unique path found in the data, thus if the path has 
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already been seen in a previous document (EHR extract) then the path is not added to 

pathindex. As an example of this, consider Table 1 that shows that there were 2820 

different paths in the EHR extracts of 4.2 million patients (labeled sus4200k). The Dewey 

id of the document node containing a path is then appended to a “TP”-table (Figure 1) 

that has a name based on the Path id number corresponding to the path in the pathindex 

table. If it is a branch node then the corresponding table is of type Branch, if there instead 

is a leaf/data/text value at the node it is of type Leaf, see Figure 1. This design using a 

large number of tables/files suits the distributed Hadoop implementation when data and 

computational load is to be distributed over several servers. 

 
Figure 1. Simplified table examples. The number of TP-tables corresponds to the number of entries in the 

pathindex table that grows when new kinds of clinical information (using new archetypes etc) is added to the 

system. The number of rows within the TP-tables increases with the number of patients and notes per patient. 

archetype_node_id: In an archetype-based tree structure, many node instances have an 

attribute named archetype_node_id that via archetypes identify the clinical meaning of 

the node [1]. In an AQL query [6], archetypes play important roles by occurring in the 

form of archetype predicates such as e.g. [openEHR-EHR-

COMPOSITION.encounter.v1], and node predicates such as e.g.  items[at0001]. 

Therefore, we make the archetype_node_id a first class citizen by including 

archetype_node_ids in the enumerated paths. An example path expression is: 
...data[at0001]/events[at0002]/data[at0003]/items[at0004]/value[]... 

This is in contrast to the conventional XML transformation method [8] of storing 

the archetype-id and values in corresponding attributes in a table, thus a considerable 

amount of join operations on the attribute tables and the path tables can be avoided. 

Reference Model types. RM types such as COMPOSITION, OBSERVATION 

occur in the FROM clause of an AQL query as class expressions to scope the data source 

for the query. We collect all the RM types and for each type t, the set of Dewey_IDs 

whose type is tagged t is stored in a table (see “Type nodes” in Figure 1). 

AQL query processing. A formal description of the translation from AQL to SQL 

is beyond the scope of this paper. In the following we outline general rules with the help 

of a running query example (taken from a Brazilian epidemiology context described in 

[3] and [4]) which returns the records in a certain date interval where a certain 

examination is missing (indicated by the presence of a null-flavour value): 
SELECT e/ehr_id/value as ehr_id FROM Ehr e 
CONTAINS COMPOSITION c [openEHR-EHR-COMPOSITION.citologic_exam_form.v1] 
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CONTAINS OBSERVATION obs [openEHR-EHR-OBSERVATION.siscolo_anamnesis.v1] 
WHERE EXISTS 
obs/data[at0001]/events[at0002]/data[at0003]/items[at0004]/value  
AND EXISTS 
obs/data[at0001]/events[at0002]/data[at0003]/items[at0022]/null_flavour 
AND (c/context/start_time/value >= $beginTime AND 
c/context/start_time/value < $endTime) 
The translation takes the following steps: 

1. Identify paths. All paths can be extracted from the SELECT and WHERE clauses. 

Moreover, we retrieve the archetype predicates from the FROM clause and combine 

them together to produce the desired path expressions. For the example query we 

generate four paths ending with these substrings (suffixes): 
P1 e/ehr_id/value 

P2 
[openEHR-EHR-OBSERVATION.siscolo_anamnesis.v1] 

/data[at0001]/events[at0002]/data[at0003]/items[at0004]/value

P3 
[openEHR-EHR-OBSERVATION.siscolo_anamnesis.v1] 

/data[at0001]/events[at0002]/data[at0003]/items[at0022]/null_flavour 

P4 [openEHR-EHR-COMPOSITION.citologic_exam_form.v1] /context/start_time/value 

Note that if the retrieved path is not unique, we will retrieve a set of paths. To simplify 

the presentation, we assume all above paths are unique. 

2. Retrieve tables. For each path from the last step, we retrieve the tables TP1, TP2, TP3 

and TP4 respectively. Note that TP1 and TP4 contain Dewey_ID and value attributes (leaf 

tables), and TP2 and TP3 contain only Dewey_IDs (branch tables). 

3. Filters. The filter (value >= $beginTime AND value < $endTime) is applied to TP4.  

4. Join operation. We conduct a join operation on TP2 and TP3 with the Dewey_ID of the 

variable obs as the join attribute. Note that the Dewey_ID of obs can be conveniently 

obtained by trimming a suffix of certain length on the Dewey_ID of TP2 and TP3 

respectively. We name the result table as TP23. 

5. Containment checking. Analogously to obs, we can obtain the Dewey_ID of e and c 

from TP1 and TP4 respectively. Then the containment checking is conducted by the join 

operation on TP1, TP23 and TP4 with the join condition that e is the ancestor of c and c is 

the ancestor of obs. We name the result table as TP1234. 

6. Type checking. We check whether c is of type COMPOSITION and obs is of the type 

OBSERVATION by joining TP1234 with the type table TCOMPOSITION and TOBSERVATION. 

4. Results and Discussion 

The data sets used for tests are sus42k, sus420k and sus4200k, which contain information 

about 42,428, 424,270 and 4,242,500 patients, respectively. They have been described 

and used for other performance tests in [4]. The data is shredded into the branch and leaf 

type tables. The characteristics of the datasets are given in the following table. 

Table 1. Characteristics of the datasets used in this study. Size is the total size of all the shredded tables. 

Shredded 

dataset 
Size # Paths 

#Branch 
tables 

#Leaf 
tables 

#Type 
tables 

Average 
table size 

sus42k 4.5 GB 2625 1819 806 24 1.7 MB 
sus420k 45 GB 2784 1929 855 24 16 MB 
sus4200k 450 GB 2820 1953 867 24 158 MB 

The experiments were conducted in a nine-node cluster Hadoop server; each node with 

quad 2.20 GHz AMD Opteron(TM) 6274 Processors running Debian GNU/Linux 6.0.10 

with 12 GB RAM and 1 TB hard disk. The Hadoop block size was 64 MB. The query, 
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also used in [4], was manually translated and coded in Java and then executed using 

Hadoop map-reduce processing on the datasets described in Tables 1 and 2.  

Table 2. Datasets, table sizes and results from query performance testing on a Hadoop cluster. The last column 
shows the running time values of the query processing. For each dataset, the query was run 10 times and an 
average running time value was calculated. 

Table size: TP1 TP2 TP3 TP4 Total Running time  

sus42k 2.1 MB 0.7 MB 0.1 MB 1.6 MB 4.5 MB 21 s 
sus420k 22 MB 6 MB 1 MB 13 MB 42 MB 29 s 
sus4200k 218 MB 60 MB 7 MB 130 MB 415 MB 59 s 

The results of this initial test indicate that archetype-aware Dewey indexing can be a 

useful tool to support ad-hoc querying in large datasets on systems with relational 

capabilities (join and containment operations etc.) The indexing is related to inverted 
indexes (like Apache Lucene) that have been applied in other openEHR settings [2].  
 

Comparisons to previous work: Performance tests [3][4][5] of different archetype-

based systems are hard to compare with each other due to different data and hardware. 

In previous studies [3][4], using this data, Couchbase gave really fast results for recurring 

queries, but required indexing time for every new (unseen) query; for really small 

datasets BaseX was faster than this more scalable Dewey+Hadoop approach. 

Future work: a) Benchmarking studies should compare several solutions on the same 

hardware setup using the same data and queries. 

b) The single query translated manually and tested is just an initial feasibility test, but 

we were encouraged by other researchers to publish it so that other teams can explore it. 

In any realistic production system the AQL to Hadoop-querying translation should be 

automated instead of hand-coded in order to support the exploratory epidemiological 

research use case described in the introduction. Automating such translation is also a 

reasonable prerequisite to ease preparation of further performance tests with multiple 

different AQL queries. Other automated AQL translations have been done earlier [3], 

and AQL grammars are available [6]. 
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