
Querying Archetype-Based Electronic

Health Records Using Hadoop and Dewey

Encoding of openEHR Models

Erik SUNDVALLa,b,1, Fang WEI-KLEINER

a, Sergio M FREIRE

c, and Patrick

LAMBRIXa,d
a
 Linköping University, Linköping, Sweden bRegion Östergötland, Linköping, Sweden

c
 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

d
 Swedish e-Science Research Centre, Sweden

Abstract. Archetype-based Electronic Health Record (EHR) systems using generic
reference models from e.g. openEHR, ISO 13606 or CIMI should be easy to update
and reconfigure with new types (or versions) of data models or entries, ideally with
very limited programming or manual database tweaking. Exploratory research (e.g.
epidemiology) leading to ad-hoc querying on a population-wide scale can be a
challenge in such environments. This publication describes implementation and test
of an archetype-aware Dewey encoding optimization that can be used to produce
such systems in environments supporting relational operations, e.g. RDBMs and
distributed map-reduce frameworks like Hadoop. Initial testing was done using a
nine-node 2.2 GHz quad-core Hadoop cluster querying a dataset consisting of
targeted extracts from 4+ million real patient EHRs, query results with sub-minute
response time were obtained.

Keywords. Medical Record Systems, Computerized; Database Management
Systems, Dewey encoding, Archetypes, openEHR, Hadoop, Epidemiology, XML

1. Introduction

The adoption of standardized “archetype”-based Electronic Health Record (EHR)

systems is increasing globally. Such systems use a fixed reference model (from e.g.
openEHR, ISO 13606 or CIMI) that provides basic building blocks that are then

assembled and constrained (primarily by clinicians) into clinically relevant structures

using modeling layers consisting of archetypes and templates [1]. This partly resembles
how XML building blocks can be assembled and constrained by layers of schemas.

“Archetyped” instance data, i.e. conforming to archetypes, templates and the

corresponding reference model (RM), often form deep tree structures where path-based

querying is useful for both single-patient and epidemiological multi-patient use cases.

Existing deep tree storage and retrieval mechanisms (for example XML- and JSON-

databases) can be reused for archetype-based systems [2]. There are open source XML-

database solutions fully capable of handling single-patient use-cases for databases with

millions of archetype-based records [3]. However, for good performance for large

population epidemiological queries, other approaches or optimizations are needed [4]:

1 Corresponding Author: erik.sundvall@liu.se. IMT, Linköping University, 581 85 Linköping, Sweden

Informatics for Health: Connected Citizen-Led Wellness and Population Health
R. Randell et al. (Eds.)

© 2017 European Federation for Medical Informatics (EFMI) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-753-5-406

406

• If the queries are well known beforehand and regularly re-run, like for recurring

statistical needs, then common solutions are a) to have database administrators

(DBAs) create query-specific index optimizations or b) to export relevant parts

to a data warehouse (OLAP) system.

• In exploratory epidemiological research, on the other hand, where query results

often lead to new questions, the delay caused by waiting for a DBA or other

constrained (often human) resources can become a major bottleneck. Thus

explorations of automated optimizations also handling ad-hoc population

queries have been published [4]. In this publication we describe Dewey
encoding as another method to add to the arsenal of solutions for these ad-hoc
query use cases.

Storage of archetype-based data can be implemented using various database approaches

[2][3][4][5] but are often queried using the implementation-neutral AQL (Archetype

Query Language) [6] that can be translated into the database's ”native” query language.

Many kinds of tree-shaped data can be Dewey encoded and stored in many kinds of

persistence solutions. This paper contributes an outline of how Dewey indexing can be

customized by including archetype_node_id in the index paths in order to enhance
performance when applied to openEHR models and associated AQL queries; non-
enhanced XML Dewey coding would instead store archetype_node_id as attribute+value.
In our implementation we used Hadoop as a scalable persistence and query execution

environment. Adapting the approach for other persistence platforms and non-XML-

formats should be rather straightforward.

2. Background

Based on the Dewey Decimal Classification [7], which was originally developed for

general knowledge classification, Dewey order encoding is among the popular methods

for encoding XML documents [8]. With Dewey order, each node in an XML tree is

labeled with a vector (for example the string 1.8.3.1) representing the path from the root

to the node following the rules: (1) The root is labeled as an empty string; and (2) For a

non-root element u, label(u)=label(v).x, where u is the xth child of v.
With the Dewey order encoding, each node in the XML tree is labeled with a distinct

string. This enables Axis operations in an XPath-style query such as ::child, ::descendant

and ::sibling to be simply formulated with common string operations. Based on the

Dewey order coding, all the distinct paths of the underlying XML document can then be

enumerated and to each path expression, the set of the corresponding nodes (in the form

of Dewey encoding) is referred. The steps above are in fact the essential operations used

in the so-called XML document shredding, with the ultimate goal of storing and querying

the XML data in Relational Database Systems.

3. Method

Since the collection of all archetype-based data instances in an EHR system is a giant

logical tree with paths, we follow the general routine of Dewey order encoding [8] to

label all the nodes in the tree. One index table (pathindex in Figure 1) assigns a
consecutive path id number to each unique path found in the data, thus if the path has

E. Sundvall et al. / Querying Archetype-Based Electronic Health Records 407

already been seen in a previous document (EHR extract) then the path is not added to

pathindex. As an example of this, consider Table 1 that shows that there were 2820

different paths in the EHR extracts of 4.2 million patients (labeled sus4200k). The Dewey

id of the document node containing a path is then appended to a “TP”-table (Figure 1)

that has a name based on the Path id number corresponding to the path in the pathindex

table. If it is a branch node then the corresponding table is of type Branch, if there instead

is a leaf/data/text value at the node it is of type Leaf, see Figure 1. This design using a

large number of tables/files suits the distributed Hadoop implementation when data and

computational load is to be distributed over several servers.

Figure 1. Simplified table examples. The number of TP-tables corresponds to the number of entries in the

pathindex table that grows when new kinds of clinical information (using new archetypes etc) is added to the

system. The number of rows within the TP-tables increases with the number of patients and notes per patient.

archetype_node_id: In an archetype-based tree structure, many node instances have an

attribute named archetype_node_id that via archetypes identify the clinical meaning of

the node [1]. In an AQL query [6], archetypes play important roles by occurring in the

form of archetype predicates such as e.g. [openEHR-EHR-

COMPOSITION.encounter.v1], and node predicates such as e.g. items[at0001].

Therefore, we make the archetype_node_id a first class citizen by including

archetype_node_ids in the enumerated paths. An example path expression is:
...data[at0001]/events[at0002]/data[at0003]/items[at0004]/value[]...

This is in contrast to the conventional XML transformation method [8] of storing

the archetype-id and values in corresponding attributes in a table, thus a considerable

amount of join operations on the attribute tables and the path tables can be avoided.

Reference Model types. RM types such as COMPOSITION, OBSERVATION

occur in the FROM clause of an AQL query as class expressions to scope the data source

for the query. We collect all the RM types and for each type t, the set of Dewey_IDs

whose type is tagged t is stored in a table (see “Type nodes” in Figure 1).

AQL query processing. A formal description of the translation from AQL to SQL

is beyond the scope of this paper. In the following we outline general rules with the help

of a running query example (taken from a Brazilian epidemiology context described in

[3] and [4]) which returns the records in a certain date interval where a certain

examination is missing (indicated by the presence of a null-flavour value):
SELECT e/ehr_id/value as ehr_id FROM Ehr e
CONTAINS COMPOSITION c [openEHR-EHR-COMPOSITION.citologic_exam_form.v1]

E. Sundvall et al. / Querying Archetype-Based Electronic Health Records408

CONTAINS OBSERVATION obs [openEHR-EHR-OBSERVATION.siscolo_anamnesis.v1]
WHERE EXISTS
obs/data[at0001]/events[at0002]/data[at0003]/items[at0004]/value
AND EXISTS
obs/data[at0001]/events[at0002]/data[at0003]/items[at0022]/null_flavour
AND (c/context/start_time/value >= $beginTime AND
c/context/start_time/value < $endTime)
The translation takes the following steps:

1. Identify paths. All paths can be extracted from the SELECT and WHERE clauses.

Moreover, we retrieve the archetype predicates from the FROM clause and combine

them together to produce the desired path expressions. For the example query we

generate four paths ending with these substrings (suffixes):
P1 e/ehr_id/value

P2
[openEHR-EHR-OBSERVATION.siscolo_anamnesis.v1]

/data[at0001]/events[at0002]/data[at0003]/items[at0004]/value

P3
[openEHR-EHR-OBSERVATION.siscolo_anamnesis.v1]

/data[at0001]/events[at0002]/data[at0003]/items[at0022]/null_flavour

P4 [openEHR-EHR-COMPOSITION.citologic_exam_form.v1] /context/start_time/value

Note that if the retrieved path is not unique, we will retrieve a set of paths. To simplify

the presentation, we assume all above paths are unique.

2. Retrieve tables. For each path from the last step, we retrieve the tables TP1, TP2, TP3

and TP4 respectively. Note that TP1 and TP4 contain Dewey_ID and value attributes (leaf

tables), and TP2 and TP3 contain only Dewey_IDs (branch tables).

3. Filters. The filter (value >= $beginTime AND value < $endTime) is applied to TP4.

4. Join operation. We conduct a join operation on TP2 and TP3 with the Dewey_ID of the

variable obs as the join attribute. Note that the Dewey_ID of obs can be conveniently

obtained by trimming a suffix of certain length on the Dewey_ID of TP2 and TP3

respectively. We name the result table as TP23.

5. Containment checking. Analogously to obs, we can obtain the Dewey_ID of e and c

from TP1 and TP4 respectively. Then the containment checking is conducted by the join

operation on TP1, TP23 and TP4 with the join condition that e is the ancestor of c and c is

the ancestor of obs. We name the result table as TP1234.

6. Type checking. We check whether c is of type COMPOSITION and obs is of the type

OBSERVATION by joining TP1234 with the type table TCOMPOSITION and TOBSERVATION.

4. Results and Discussion

The data sets used for tests are sus42k, sus420k and sus4200k, which contain information

about 42,428, 424,270 and 4,242,500 patients, respectively. They have been described

and used for other performance tests in [4]. The data is shredded into the branch and leaf

type tables. The characteristics of the datasets are given in the following table.

Table 1. Characteristics of the datasets used in this study. Size is the total size of all the shredded tables.

Shredded

dataset
Size # Paths

#Branch
tables

#Leaf
tables

#Type
tables

Average
table size

sus42k 4.5 GB 2625 1819 806 24 1.7 MB
sus420k 45 GB 2784 1929 855 24 16 MB
sus4200k 450 GB 2820 1953 867 24 158 MB

The experiments were conducted in a nine-node cluster Hadoop server; each node with

quad 2.20 GHz AMD Opteron(TM) 6274 Processors running Debian GNU/Linux 6.0.10

with 12 GB RAM and 1 TB hard disk. The Hadoop block size was 64 MB. The query,

E. Sundvall et al. / Querying Archetype-Based Electronic Health Records 409

also used in [4], was manually translated and coded in Java and then executed using

Hadoop map-reduce processing on the datasets described in Tables 1 and 2.

Table 2. Datasets, table sizes and results from query performance testing on a Hadoop cluster. The last column
shows the running time values of the query processing. For each dataset, the query was run 10 times and an
average running time value was calculated.

Table size: TP1 TP2 TP3 TP4 Total Running time

sus42k 2.1 MB 0.7 MB 0.1 MB 1.6 MB 4.5 MB 21 s
sus420k 22 MB 6 MB 1 MB 13 MB 42 MB 29 s
sus4200k 218 MB 60 MB 7 MB 130 MB 415 MB 59 s

The results of this initial test indicate that archetype-aware Dewey indexing can be a

useful tool to support ad-hoc querying in large datasets on systems with relational

capabilities (join and containment operations etc.) The indexing is related to inverted
indexes (like Apache Lucene) that have been applied in other openEHR settings [2].

Comparisons to previous work: Performance tests [3][4][5] of different archetype-

based systems are hard to compare with each other due to different data and hardware.

In previous studies [3][4], using this data, Couchbase gave really fast results for recurring

queries, but required indexing time for every new (unseen) query; for really small

datasets BaseX was faster than this more scalable Dewey+Hadoop approach.

Future work: a) Benchmarking studies should compare several solutions on the same

hardware setup using the same data and queries.

b) The single query translated manually and tested is just an initial feasibility test, but

we were encouraged by other researchers to publish it so that other teams can explore it.

In any realistic production system the AQL to Hadoop-querying translation should be

automated instead of hand-coded in order to support the exploratory epidemiological

research use case described in the introduction. Automating such translation is also a

reasonable prerequisite to ease preparation of further performance tests with multiple

different AQL queries. Other automated AQL translations have been done earlier [3],

and AQL grammars are available [6].

References

[1] openEHR architecture overview, Release-1.0.3, 2015, http://www.openehr.org/releases/BASE/Release-
1.0.3/architecture_overview.html

[2] Frade S, Freire S, Sundvall E, Patriarca-Almeida J, Cruz-Correia R. Survey of openEHR storage
implementations. 26th IEEE International Symposium on Computer-Based Medical Systems 2013 June
20–22; Porto, Portugal. p. 303–307.

[3] Freire S, Sundvall E, Karlsson D, Lambrix P. Performance of XML Databases for Epidemiological Queries
in Archetype-Based EHRs. Scandinavian Conference on Health Informatics. 2012 October 2–3;
Linköping, Sweden. Linköping Electronic Conference Proceedings 70, p. 51–57.

[4] Freire S, Teodoro D, Wei-Kleiner F, Sundvall E, Karlsson D, Lambrix P. Comparing the Performance of
NoSQL Approaches for Managing Archetype-Based Electronic Health Record Data. PLoS ONE 11(3):
e0150069, 2016.

[5] Wang L, Min L, Wang R, Lu X, Duan H. Archetype relational mapping - a practical openEHR persistence
solution. BMC Medical Informatics and Decision Making 15:88, 2015.

[6] Archetype Query Language (AQL), http://openehr.org/releases/QUERY/latest/docs/AQL/AQL.html
[7] Dewey Decimal Classification, https://en.wikipedia.org/wiki/Dewey_Decimal_Classification
[8] Tatarinov I, Viglas SD, Beyer K, Shanmugasundaram J, Shekita E, and Zhang C. Storing and querying

ordered XML using a relational database system. ACM SIGMOD International Conference on

Management of Data. 2002 June 2-6; New York, NY, USA. ACM, p. 204-215.

E. Sundvall et al. / Querying Archetype-Based Electronic Health Records410

