
Fast and Efficient Feature Engineering for
Multi-Cohort Analysis of EHR Data

Michal OZERY-FLATO1, Chen YANOVER, Assaf GOTTLIEB, Omer WEISSBROD,
Naama PARUSH SHEAR-YASHUV, and Yaara GOLDSCHMIDT

Healthcare Informatics Department,
IBM Research - Haifa, Israel

Abstract. We present a framework for feature engineering, tailored for
longitudinal structured data, such as electronic health records (EHRs). To fast-
track feature engineering and extraction, the framework combines general-use
plug-in extractors, a multi-cohort management mechanism, and modular
memoization. Using this framework, we rapidly extracted thousands of features
from diverse and large healthcare data sources in multiple projects.

Keywords. Feature engineering, electronic health records, longitudinal data.

1. Introduction

Feature engineering is the process of deriving informative features from data for a
machine learning task. It requires tailoring to the source data, and is often assisted by
domain knowledge. Following the increase in size and complexity of data, feature
engineering has become a much more challenging, programmatically multifaceted, and
time-consuming task. We describe a framework for enhancing the process of feature
engineering from EHR data. This framework is based on extensive experience in
analyzing such data, gathered during more than a decade of research on multiple
disease areas and data sources.

2. Feature Extraction Framework

The basic elements of the proposed framework are feature extractors (shortened as
extractors). Each extractor derives a set of features from the source data, or from
features computed by other extractors. The features computed by an extractor are
determined by a predefined, configurable set of parameters. Commonly-used extractors
and their parameters are described in Section 2.1. The dependencies between different
extractors are presented by a directed acyclic graph, termed the extractors graph.
Typically, this graph has a single root, which represents the final output features matrix.
The extraction engine orchestrates the entire extraction process; it instantiates and
manages the extractors graph, and provides additional utilities that manage: (1) access
to the data source; (2) parameters; (3) cached features; and (4) train-data statistics. The

1 Corresponding author, Healthcare Informatics Department, IBM Research - Haifa, Haifa University

Campus, Haifa, 3498825, Israel; E-mail: ozery@il.ibm.com.

Informatics for Health: Connected Citizen-Led Wellness and Population Health
R. Randell et al. (Eds.)
© 2017 European Federation for Medical Informatics (EFMI) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-753-5-181

181

input to the extraction engine defines both the extractors graph and the analyzed cohort.
The latter is managed in a cohorts repository. Figure 1 illustrates the extraction
framework and its components.

Figure 1. Overview of feature engineering framework.

2.1. Feature Extractors

Extractors are the building blocks of the feature extraction process. These plug-ins
allow users to add new extractors without requiring a code change of the framework.
Below we describe commonly used extractors, starting with those accessing a
structured data source directly:

1. Event extractor: computes various aggregations on a sequence of events,
where each event has a patient identifier, event name, time point/interval, and
a value. A similar notion was previously described in [1].

2. Numerical and Categorical Table extractor: computes various aggregations
on numerical and categorical data columns in a table, respectively. The input
table has the following columns: patient identifier, time [optional], and one or
more data columns.

3. Time-to-Index-Date extractor: computes various aggregations on the
difference between date-columns in a table and the patient’s index-date
(index-dates will be discussed in Section 2.2).

For example, features like “average value of a <lab-test>” can be generated either
by Event or Numerical Table extractors, and features like “indicator of a <diagnosis>”
can be generated by either Event or Categorical Table extractors. The choice of
extractor depends on the format of the source data. The Time-to-Index-Date extractor is
used for computing “age” at index-date, or features like “time since first <diagnosis>”.
The sequence of events / data table, as well as the aggregation type and observation
window, are configured by parameters. An SQL query is automatically built for each of
these extractors, allowing the bulk computation to be performed in the database.

On top of the above-listed “atomic” extractors, the following extractors combine
and manipulate features computed by other extractors:

1. Group extractor: concatenates output features of multiple extractor nodes.

M. Ozery-Flato et al. / Fast and Efficient Feature Engineering for Multi-Cohort Analysis182

2. Family extractor: executes a given extractor across a (configurable) list of
parameter configurations and concatenates the resulting output features.

3. Filter extractor: filters out features (e.g., sparse features). The filtering type is
configurable.

4. Transformer extractor: transforms features (e.g., algebraic transformations
or second-tier aggregation of features). The transformation type is
configurable.

One of the functionalities provided by the framework is the management of train-
data statistics, to support extraction from new data, e.g., during the test phase. For
example, an extractor that filters sparse features may keep statistics identifying the
filtered features, so the same set of features will be filtered for new data; or an extractor
that computes normalized features (e.g., weight percentile). Extractors that require
train-data statistics are often context-sensitive, that is, features’ vectors computed for
the same individual may change for different cohorts. Extractors that depend on a
context-sensitive extractor are expected to be context-sensitive as well.

2.2. Multi-Cohort Support

Often there is an interest in analyzing two or more related cohorts; for example, all
patients having a disease; women who have the disease; and women in a certain age
range having the disease. The framework manages all the cohorts in a cohort repository,
which compactly represents each cohort by a list of quartets, termed samples. A sample
is comprised of four fields: (1) patient identifier; (2) start-date; (3) index-date; and (4)
end-date. The start-date and end-date bound and limit the overall time period for which
data is analyzed for the patient. The index-date partitions this time period into two: (1)
baseline period [start-date, index-date], and (2) the follow-up period [index-date, end-
date]. In a prediction task, features are extracted from the baseline period, while the
predicted outcome is extracted from the follow-up period. The framework allows for
the same individual to appear more than once in a cohort, under the restriction that the
corresponding samples have different index-dates.

2.3. Speeding Up and Tracking Feature Extraction

Data analysis, and feature engineering in particular, are typically an iterative process,
where different iterations may involve overlapping feature sets and/or cohorts. Our
framework provides an efficient modular memoization mechanism for the extraction
process, which identifies and reuses previously computed features. The extraction
engine automatically assigns each extractor node with an ID that uniquely maps to the
node’s configuration, cohort, and dependencies in the graph. This ID is then used for
associating each extractor with its cached output features and train-data statistics.
Multi-cohort analysis, including cross validation and bootstrapping, often involve sub-
cohorts of a larger cohort. To optimize the extraction for sub-cohorts, the memoization
of every extractor that is not context-sensitive is performed at the level of the larger
cohort. Finally, the output features include the ID of the root extractor, which can be
used for tracking the configuration of the entire extraction process, e.g., for
reproducibility purposes. This ID should also be used in the test phase, so the
framework can locate the train-data statistics of each extractor.

M. Ozery-Flato et al. / Fast and Efficient Feature Engineering for Multi-Cohort Analysis 183

We extended the framework to support Big Data analysis using Apache Spark [2].
In this extension, the feature matrix is built in a distributed manner using Spark
DataFrames, and the entire extraction process can be integrated into a Spark machine
learning pipeline (MLlib [3]).

3. Framework Demonstration

We demonstrate the usefulness of our feature engineering framework on a real-world,
de-identified (structured) claims dataset of 320K patients, for risk factor analysis across
multiple cohorts. The considered risk was for urgent care visits during a one-year
period. Previously, we effectively extracted thousands of features from this dataset for
applications such as risk prediction [4] and contextual anomaly detection [5]. We
evaluate the predictivity of the extracted features for the outcome and compare their
importance for three chronic conditions: epilepsy, diabetes, and hypertension. We use
the cohort of all patients as a reference.

The baseline period was defined as the first two years of the data (2002-2004) in
all four cohorts. Each of the three chronic condition cohorts was defined by requiring
that patients have at least one relevant diagnosis (i.e., hypertension, diabetes, or
epilepsy) during the baseline period. The outcome was defined as having at least one
urgent care visit during the one-year follow-up period (2004-2005). We extracted
features from all the entities available in the data: diagnosis and procedure codes,
pharmacy prescriptions, lab values, and patient demographics. We used HCUP-US
Clinical Classifications Software (CCS) for grouping related ICD9 (diagnoses) and
CPT (procedures) codes. We utilized the National Drug Code (NDC) Directory to
cross-index each NDC to its corresponding generic drug components. Sparse features
with less than 100 non-zero/valid values were filtered out. We imputed missing values
in lab test features using the average of existing values and used Random Forest and its
Gini-importance [6] for ranking the importance of features. The results of the analysis
are summarized in Table 1. The extracted features were found to be informative in
every cohort (out-of-bag AUC between 0.69 and 0.72). Inspection of the top-10 ranked
features in each cohort revealed that risk factors for urgent care are dominated by
utilization features, such as number of claims and number of prior urgent care visit.
Risk factors not directly related to utilization included “Age” and features associated
with the cohort (e.g., “Epilepsy; convulsion: count” in the epilepsy cohort).

4. Conclusion

We described a framework that enhances the process of feature engineering and
extraction in a multi-cohort analysis of longitudinal structured data. Our framework
offers: (1) efficient management of cohorts; (2) an extendible library of reusable feature
extractors; (3) a modular memoization mechanism for accelerating the extraction of
overlapping feature sets; and (4) a tracking mechanism for reproducibility of former
extractions. The usability of this framework was successfully used in a variety of
applications, including risk analysis [4] and detection of unexpected response to
treatment [5].

EHRs contain longitudinal data on patients of various types: diagnoses, drug
prescriptions, lab test results, medical procedures, and more. The dynamic and irregular

M. Ozery-Flato et al. / Fast and Efficient Feature Engineering for Multi-Cohort Analysis184

nature of EHR data often requires engineering features that provide different summary
statistics per patient, such as: the average value for each lab test result; or the
proportion of days covered for each drug. Our extractors library enables simplified
definition and reliable computation of such features for configurable time windows and
cohorts. The repertoire of supported summary statistics is relatively large and is
constantly growing.

One of the unique traits of the framework is its support of context-sensitive
features. The framework provides infrastructure for managing train-data statistics for
context-sensitive feature extractors. Moreover, its memoization mechanism, which
optimizes extraction of sub-cohorts, automatically identifies context-sensitive
extractors and properly handles their memoization.

We further supplemented our framework with a plug-in for Apache Spark [2] that
extends our capabilities to analyze Big Data. Future work includes improving user
experience via a graphical user interface that will further simplify the use of the
framework, and an integrated visualization layer previously described in [5] that will
allow inspection of defined cohorts as well as present longitudinal data of individual
patients. Following all of the above, our framework offers an unprecedented, powerful
means for analyzing and manipulating EHR data.

Table 1. Analysis results. #Positive = number of patients with positive outcome; TOP-10 = Non-
utilization risk factors among top 10 ranked, excluding age

Cohort

Data statistics Prediction model

Size #Positive #Features AUC TOP-10

All 320K 22.5K (7%) 949 0.69 1) Other upper respiratory infections: count

Hypertension 51.5K 5K (10%) 729 0.69
1)Essential hypertension: count
2)TRIG lab: average
3)CHOL lab: average

Diabetes 26K 2.5K (10%) 603 0.7
1)Diabetes mellitus w/o complication: count
2)TRIG lab: average
3)CHOL lab: average

Epilepsy 2K 0.27K (13%) 175 0.72 1)Epilepsy; convulsion: count
2) CHOL lab: average

References

[1] T. Tran, W. Luo, D. Phung, S. Gupta, S. Rana, R.L. Kennedy, A. Larkins, S. Venkatesh, A framework
for feature extraction from hospital medical data with applications in risk prediction, BMC
Bioinformatics. 15 (2014) 425. doi:10.1186/s12859-014-0425-8.

[2] Apache Software Foundation, Apache Spark, (2016). http://spark.apache.org/.
[3] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D.B. Tsai, M. Amde,

S. Owen, others, MLlib: Machine Learning in Apache Spark, J. Mach. Learn. Res. 17 (2016) 1–7.
[4] H. Neuvirth, M. Ozery-Flato, J. Hu, J. Laserson, M.S. Kohn, S. Ebadollahi, M. Rosen-Zvi, Toward

Personalized Care Management of Patients at Risk: The Diabetes Case Study, in: Proc. 17th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., ACM, New York, NY, USA, 2011: pp. 395–403.
doi:10.1145/2020408.2020472.

[5] M. Ozery-Flato, L. Ein-Dor, N. Parush-Shear-Yashuv, R. Aharonov, H. Neuvirth, M.S. Kohn, J. Hu,
Identifying and Investigating Unexpected Response to Treatment: A Diabetes Case Study, Big Data. 4
(2016) 148–159.

[6] L. Breiman, Random Forests, Mach. Learn. 45 (n.d.) 5–32. doi:10.1023/A:1010933404324.

M. Ozery-Flato et al. / Fast and Efficient Feature Engineering for Multi-Cohort Analysis 185

