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Abstract. We present a framework for feature engineering, tailored for 
longitudinal structured data, such as electronic health records (EHRs). To fast-
track feature engineering and extraction, the framework combines general-use 
plug-in extractors, a multi-cohort management mechanism, and modular 
memoization. Using this framework, we rapidly extracted thousands of features 
from diverse and large healthcare data sources in multiple projects. 
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1. Introduction 

Feature engineering is the process of deriving informative features from data for a 
machine learning task. It requires tailoring to the source data, and is often assisted by 
domain knowledge. Following the increase in size and complexity of data, feature 
engineering has become a much more challenging, programmatically multifaceted, and 
time-consuming task. We describe a framework for enhancing the process of feature 
engineering from EHR data. This framework is based on extensive experience in 
analyzing such data, gathered during more than a decade of research on multiple 
disease areas and data sources. 

2. Feature Extraction Framework 

The basic elements of the proposed framework are feature extractors (shortened as 
extractors). Each extractor derives a set of features from the source data, or from 
features computed by other extractors. The features computed by an extractor are 
determined by a predefined, configurable set of parameters. Commonly-used extractors 
and their parameters are described in Section 2.1. The dependencies between different 
extractors are presented by a directed acyclic graph, termed the extractors graph. 
Typically, this graph has a single root, which represents the final output features matrix. 
The extraction engine orchestrates the entire extraction process; it instantiates and 
manages the extractors graph, and provides additional utilities that manage: (1) access 
to the data source; (2) parameters; (3) cached features; and (4) train-data statistics. The 
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input to the extraction engine defines both the extractors graph and the analyzed cohort. 
The latter is managed in a cohorts repository. Figure 1 illustrates the extraction 
framework and its components.  

Figure 1. Overview of feature engineering framework. 

 

2.1. Feature Extractors 

Extractors are the building blocks of the feature extraction process. These plug-ins 
allow users to add new extractors without requiring a code change of the framework. 
Below we describe commonly used extractors, starting with those accessing a 
structured data source directly: 

1. Event extractor: computes various aggregations on a sequence of events, 
where each event has a patient identifier, event name, time point/interval, and 
a value. A similar notion was previously described in [1].  

2. Numerical and Categorical Table extractor: computes various aggregations 
on numerical and categorical data columns in a table, respectively. The input 
table has the following columns: patient identifier, time [optional], and one or 
more data columns.  

3. Time-to-Index-Date extractor: computes various aggregations on the 
difference between date-columns in a table and the patient’s index-date 
(index-dates will be discussed in Section 2.2).  

For example, features like “average value of a <lab-test>” can be generated either 
by Event or Numerical Table extractors, and features like “indicator of a <diagnosis>” 
can be generated by either Event or Categorical Table extractors. The choice of 
extractor depends on the format of the source data. The Time-to-Index-Date extractor is 
used for computing “age” at index-date, or features like “time since first <diagnosis>”. 
The sequence of events / data table, as well as the aggregation type and observation 
window, are configured by parameters. An SQL query is automatically built for each of 
these extractors, allowing the bulk computation to be performed in the database.   

On top of the above-listed “atomic” extractors, the following extractors combine 
and manipulate features computed by other extractors:  

1. Group extractor: concatenates output features of multiple extractor nodes. 
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2. Family extractor: executes a given extractor across a (configurable) list of 
parameter configurations and concatenates the resulting output features. 

3. Filter extractor: filters out features (e.g., sparse features). The filtering type is 
configurable. 

4. Transformer extractor: transforms features (e.g., algebraic transformations 
or second-tier aggregation of features). The transformation type is 
configurable. 

One of the functionalities provided by the framework is the management of train-
data statistics, to support extraction from new data, e.g., during the test phase. For 
example, an extractor that filters sparse features may keep statistics identifying the 
filtered features, so the same set of features will be filtered for new data; or an extractor 
that computes normalized features (e.g., weight percentile). Extractors that require 
train-data statistics are often context-sensitive, that is, features’ vectors computed for 
the same individual may change for different cohorts. Extractors that depend on a 
context-sensitive extractor are expected to be context-sensitive as well. 

2.2. Multi-Cohort Support 

Often there is an interest in analyzing two or more related cohorts; for example, all 
patients having a disease; women who have the disease; and women in a certain age 
range having the disease. The framework manages all the cohorts in a cohort repository, 
which compactly represents each cohort by a list of quartets, termed samples. A sample 
is comprised of four fields: (1) patient identifier; (2) start-date; (3) index-date; and (4) 
end-date. The start-date and end-date bound and limit the overall time period for which 
data is analyzed for the patient. The index-date partitions this time period into two: (1) 
baseline period [start-date, index-date], and (2) the follow-up period [index-date, end-
date]. In a prediction task, features are extracted from the baseline period, while the 
predicted outcome is extracted from the follow-up period. The framework allows for 
the same individual to appear more than once in a cohort, under the restriction that the 
corresponding samples have different index-dates.  

2.3. Speeding Up and Tracking Feature Extraction 

Data analysis, and feature engineering in particular, are typically an iterative process, 
where different iterations may involve overlapping feature sets and/or cohorts. Our 
framework provides an efficient modular memoization mechanism for the extraction 
process, which identifies and reuses previously computed features. The extraction 
engine automatically assigns each extractor node with an ID that uniquely maps to the 
node’s configuration, cohort, and dependencies in the graph. This ID is then used for 
associating each extractor with its cached output features and train-data statistics. 
Multi-cohort analysis, including cross validation and bootstrapping, often involve sub-
cohorts of a larger cohort. To optimize the extraction for sub-cohorts, the memoization 
of every extractor that is not context-sensitive is performed at the level of the larger 
cohort. Finally, the output features include the ID of the root extractor, which can be 
used for tracking the configuration of the entire extraction process, e.g., for 
reproducibility purposes. This ID should also be used in the test phase, so the 
framework can locate the train-data statistics of each extractor. 
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We extended the framework to support Big Data analysis using Apache Spark [2]. 
In this extension, the feature matrix is built in a distributed manner using Spark 
DataFrames, and the entire extraction process can be integrated into a Spark machine 
learning pipeline (MLlib [3]). 

3. Framework Demonstration 

We demonstrate the usefulness of our feature engineering framework on a real-world, 
de-identified (structured) claims dataset of 320K patients, for risk factor analysis across 
multiple cohorts. The considered risk was for urgent care visits during a one-year 
period. Previously, we effectively extracted thousands of features from this dataset for 
applications such as risk prediction [4] and contextual anomaly detection [5]. We 
evaluate the predictivity of the extracted features for the outcome and compare their 
importance for three chronic conditions: epilepsy, diabetes, and hypertension. We use 
the cohort of all patients as a reference.  

The baseline period was defined as the first two years of the data (2002-2004) in 
all four cohorts. Each of the three chronic condition cohorts was defined by requiring 
that patients have at least one relevant diagnosis (i.e., hypertension, diabetes, or 
epilepsy) during the baseline period. The outcome was defined as having at least one 
urgent care visit during the one-year follow-up period (2004-2005). We extracted 
features from all the entities available in the data: diagnosis and procedure codes, 
pharmacy prescriptions, lab values, and patient demographics. We used HCUP-US 
Clinical Classifications Software (CCS) for grouping related ICD9 (diagnoses) and 
CPT (procedures) codes. We utilized the National Drug Code (NDC) Directory to 
cross-index each NDC to its corresponding generic drug components. Sparse features 
with less than 100 non-zero/valid values were filtered out. We imputed missing values 
in lab test features using the average of existing values and used Random Forest and its 
Gini-importance [6] for ranking the importance of features. The results of the analysis 
are summarized in Table 1. The extracted features were found to be informative in 
every cohort (out-of-bag AUC between 0.69 and 0.72). Inspection of the top-10 ranked 
features in each cohort revealed that risk factors for urgent care are dominated by 
utilization features, such as number of claims and number of prior urgent care visit. 
Risk factors not directly related to utilization included “Age” and features associated 
with the cohort (e.g., “Epilepsy; convulsion: count” in the epilepsy cohort). 

4. Conclusion 

We described a framework that enhances the process of feature engineering and 
extraction in a  multi-cohort analysis of longitudinal structured data. Our framework 
offers: (1) efficient management of cohorts; (2) an extendible library of reusable feature 
extractors; (3) a modular memoization mechanism for accelerating the extraction of 
overlapping feature sets; and (4) a tracking mechanism for reproducibility of former 
extractions. The usability of this framework was successfully used in a variety of 
applications, including risk analysis [4] and detection of unexpected response to 
treatment [5]. 

EHRs contain longitudinal data on patients of various types: diagnoses, drug 
prescriptions, lab test results, medical procedures, and more. The dynamic and irregular 
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nature of EHR data often requires engineering features that provide different summary 
statistics per patient, such as: the average value for each lab test result; or the 
proportion of days covered for each drug. Our extractors library enables simplified 
definition and reliable computation of such features for configurable time windows and 
cohorts. The repertoire of supported summary statistics is relatively large and is 
constantly growing. 

One of the unique traits of the framework is its support of context-sensitive 
features. The framework provides infrastructure for managing train-data statistics for 
context-sensitive feature extractors. Moreover, its memoization mechanism, which 
optimizes extraction of sub-cohorts, automatically identifies context-sensitive 
extractors and properly handles their memoization.  

We further supplemented our framework with a plug-in for Apache Spark [2] that 
extends our capabilities to analyze Big Data. Future work includes improving user 
experience via a graphical user interface that will further simplify the use of the 
framework, and an integrated visualization layer previously described in [5] that will 
allow inspection of defined cohorts as well as present longitudinal data of individual 
patients. Following all of the above, our framework offers an unprecedented, powerful 
means for analyzing and manipulating EHR data.   

 

Table 1. Analysis results. #Positive = number of patients with positive outcome; TOP-10 = Non-
utilization risk factors among top 10 ranked, excluding age 

Cohort 

Data statistics Prediction model 

Size #Positive #Features AUC TOP-10 

All 320K 22.5K (7%) 949 0.69 1) Other upper respiratory infections: count  

Hypertension 51.5K 5K (10%) 729 0.69 
1)Essential hypertension: count 
2)TRIG lab: average  
3)CHOL lab: average 

Diabetes 26K 2.5K (10%) 603 0.7 
1)Diabetes mellitus w/o complication: count 
2)TRIG lab: average  
3)CHOL lab: average 

Epilepsy 2K 0.27K (13%) 175 0.72 1)Epilepsy; convulsion: count 
2) CHOL lab: average 
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