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Abstract. We study information theoretic methods for ranking biomarkers. In 
clinical trials, there are two, closely related, types of biomarkers: predictive and 
prognostic, and disentangling them is a key challenge. Our first step is to phrase 
biomarker ranking in terms of optimizing an information theoretic quantity. This 
formalization of the problem will enable us to derive rankings of 
predictive/prognostic biomarkers, by estimating different, high dimensional, 
conditional mutual information terms. To estimate these terms, we suggest efficient 
low dimensional approximations. Finally, we introduce a new visualisation tool that 
captures the prognostic and the predictive strength of a set of biomarkers. We 
believe this representation will prove to be a powerful tool in biomarker discovery. 
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1. Introduction 

We present an information theoretic approach to disentangle predictive and prognostic 
biomarkers. In clinical trials, a prognostic biomarker is a clinical or biological 
characteristic that provides information on the likely outcome irrespective of the 
treatment. On the other hand, a predictive biomarker, is a clinical or biological 
characteristic that provides information on the likely benefit from treatment. One of the 
key challenges in personalised medicine is to discover predictive biomarkers which will 
guide the analysis for tailored therapies, while discovering prognostic biomarkers is 
crucial for general patient care [9]. We should clarify that our work focuses on hypothesis 
generation (exploratory analysis), instead of hypothesis testing (confirmatory analysis) 
[5]. 

In our work we will focus on a clinical dataset D = {yi,xi,ti}n
i=1, where, y is a 

realization of a binary target variable Y, t is a realization of binary treatment indicator T 
(i.e. T = 1 if patient received experimental treatment, 0 otherwise), and x is a p-
dimensional realization of the feature vector X, which describes the joint random variable 
of the p categorical features (or biomarkers). To make the distinction between prognostic 
and predictive biomarkers more formal we will follow a strategy introduced by various 
previous works [4, 5]. Let us assume that the true underlying model is the following 
logistic regression with up to second order interaction terms: 
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logit

Prognostic term  term

Covariates with non-zero β coefficients are prognostic, while with non-zero δ 
coefficients are predictive. Our work proposes an information theoretic framework for 
deriving two different rankings of the biomarkers, one that captures their prognostic 
strength, and one that captures their predictive strength. On top of that, we introduce a 
visualisation tool that captures both the prognosticness and the predictiveness of a set of 
biomarkers. This tool enables us to identify potentially undiscovered biomarkers, worthy 
of further investigation. 

2. Background on Biomarker Ranking 

Here we connect the problem of biomarker discovery with the machine learning problem 
of feature selection and the clinical trials problem of subgroup identification. 

2.1.  Prognostic Biomarker Discovery and Feature Selection 

We now demonstrate that the problem of selecting prognostic biomarkers is equivalent 
to feature selection using a supervised dataset {yi,xi}n

i=1. There are many different 
methods for feature selection, but we will focus on information theoretic approaches, 
where, firstly we rank the features and then we select the top-k ones that contain most of 
the useful information. The underlying objective function is to find the smallest feature 
set X  that maximizes I(X ;Y), or in other words that the shared information between X  

and Y is maximized.  Brown et al. [2] derived a greedy optimization process which 
assesses features based on a simple scoring criterion on the utility of including a feature. 
At each step we select the feature Xk that maximizes the conditional mutual information 
(CMI): JCMI(Xk) = I(Xk;Y|Xθ), where Xθ is the set of the features already selected. As the 
number of selected features grows, the dimension of Xθ also grows, and this makes our 
estimates less reliable. To overcome this problem low order criteria have been derived. 
For example, by ranking the features independently on their mutual information with the 
class, we derive a ranking that takes into account the relevancy with the class label. 
Choosing the features according to this ranking corresponds to the Mutual Information 
Maximization (MIM) criterion; where the score of each feature Xk is given by: JMIM(Xk) 

= I(Xk;Y). This approach does not consider the redundancy between the features. By 
using more advanced techniques, we can take into account both relevancy and 
redundancy between the features themselves, without having to compute very high 
dimensional distributions. Brown et al. [2] showed that a criterion that controls relevancy, 
redundancy, conditional redundancy and provides a very good tradeoff in terms of 
accuracy, stability and flexibility is the Joint Mutual Information (JMI) criterion [11]:

JMI .  
 Our aim is to explore how the above framework can been extended to be useful 
in clinical trial scenarios, i.e. dataset D = {yi,xi,ti}n

i=1. The extra treatment variable T 
provides interesting dynamics, but before showing our suggested extension, we will 
briefly present the literature on predictive biomarkers and subgroup identification. 
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2.2. Predictive Biomarker Discovery and Subgroup Identification 

The problem of deriving predictive biomarkers is closely related to the problem of 
subgroup identification [5]. In clinical trials, patient populations cannot be considered 
homogeneous, and thus the effect of treatment will vary across different subgroups of 
the population. Exploring the heterogeneity of subject responses to treatment is very 
critical for drug development, which is underlined by a draft FDA (Food and Drug 
Administration) guidance [9]. As a result, consideration of patient subgroups is necessary 
in multiple stages of trial development. Berry [1] gives the following definition: 
subgrouping is a partition of the set of all patients into disjoint subsets or subgroups and 
it is usually determined by a small number of measurable covariates, which are the 
predictive biomarkers. In the traditional subgroup identification problem, the set of 
predictive biomarkers is relatively small, i.e. 2-3 biomarkers [6]. 

In the literature, there are many different methods for subgroup identification. A 
popular one is recursive partitioning of the covariate space, using criteria that capture 
the interaction between T and Y [6, 7, 10]. Another solution builds upon the 
counterfactual modelling idea: firstly, by deriving a new variable for each patient that 
captures the treatment effect and then using this variable to select or rank the covariates. 
For example, Foster et al. [4] can be seen as exploring the covariate space which 
maximizes the odds-ratio between T and Y. In the following section, we will show that 
starting from a natural objective function, we can derive predictive biomarkers by 
exploring areas that maximize the mutual information between T and Y. 

3. An Information Theoretic View on Biomarker Ranking 

Our work extends the feature ranking framework from supervised to clinical trial data. 
The treatment variable T provides extra useful information, and a natural way to capture 
this is by the following criterion: to maximize the shared mutual information between 
the target Y and the joint random variable of the treatment T and the optimal feature set 
X , or in information theoretic notation: X  = argmax I(XθT;Y). By using the chain rule 
[3], this objective can be decomposed as follows in the following way: 

    
Prognostic term  term

              

The first term, captures the features with prognostic power, while the second captures the 
features with predictive power. By optimizing these two terms independently we can 
derive two greedy optimization process, where at each step we select the feature Xk that 
maximizes the following terms: Prog( )= ( ; | Prog) and  ( )= ( ; | Pred), 
where Prog are the features already been ranked as prognostic, while Pred as predictive. 
As the number of selected features grows, the dimension of Prog and Pred also grows, 
and this makes the estimates less reliable. To overcome this issue, with the following 
theorem we derive low-order approximations, such as the one presented in Section 2.1. 
Theorem 1. The first two order approximations are given by: 

                  
Prog Pred

Prog Prog Pred Pred

 

Proof sketches: For prognostic, the proof is identical to [2], while for the predictive we 
can prove these approximations by combining the results of [2] with the chain rule [3]. 
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For example, by making assumptions similar to the ones of MIM, we can derive the 
1st-order criteria for deriving prognostic and predictive rankings respectively. These 
criteria do not consider interactions between features, and thus fail to capture the 
redundancy. To overcome this limitation so we can use higher order criteria, such as JMI, 
which explores 2nd-order interaction terms between features. 

4. Predictive–Prognostic (PP) Graphs 

We now present a visualisation tool that captures both the prognostic and the predictive 
power of a set of biomarkers (PP-graphs). We believe that this representation will provide 
useful information over both the prognostic and predictive power of each biomarker, and 
it will be helpful for controlling false discoveries in clinical trials. For example, in 
subgroup-identification (Section 2.2), we define interesting subgroupings by using 
predictive biomarkers. Many methods, such as the counterfactual modelling, i.e. Virtual 
twins suggested by [4], derive as predictive, biomarkers that are strongly prognostic. 
Using a PP-graph we get more insight over the prognostic and predictive power of each 
biomarker and this may help in eliminating this type of errors. 
      Now we will show these graphs through a motivating example. We will use the same 
data generation model as in [4]. Let us assume that we simulate randomized trials with 
1000 patients, and the Xs are generated as independent Xj ∼ N(0,1), j = 1...15. We consider 
logit models for data generation: 

logitP(y = 1|t,x)= −1+0.5(x1+x2−x7+x2 x7)+0.1t +1.5tI(x1 > 0∩x2 < 0∩x3 > 0). 
The patients with (x1 > 0∩x2 < 0∩x3 > 0) will have an enhanced treatment effect. As a 
result the three variables, X1 ,X2 and X3, are the predictive biomarkers. Furthermore, X1,X2 

and X7 are the three prognostic biomarkers and the other nine biomarkers are irrelevant. 
Figure 1 shows three PP-graphs. In the x-axis, we have the normalised score of each 

biomarker derived by a prognostic ranking. We normalised scores to take values from 
[0,1], where 1 is the score for the most-prognostic biomarker. In the y-axis, we have the 
normalised scores for the predictive ranking. The red area (vertical shaded region) 
represents the top-k prognostic-biomarkers, while the green (horizontal shaded region) 
the top-k predictive, for these specific PP-graphs we used k = 3, which corresponds to the 
score cut-off value of (p − k)/p = (15 − 3)/15 = 0.80. The intersection of these two areas 
– orange area (top right shaded corner)– should contain the biomarkers that are both 
prognostic and predictive. We plot the average predictive/prognostic rankings over 100 
sample datasets, using Virtual-twins [4] and our two approaches suggested in Theorem 
1. For estimating mutual information, the features were discretized in 4 equal width bins. 
As we observe, Virtual-twins, tends to push a prognostic biomarker (X7) into the 
predictive area –false positive. The 1st-order approach classifies X1 only as prognostic and 
not as predictive –false negative. While, our 2nd-order criterion distinguishes biomarkers 
perfectly. 

5. Conclusions and Future Work 
In this work, we focused on disentangling rankings of the biomarkers that quantify their 
predictive and their prognostic power. We presented an information-theoretic approach, 
where we started from a clearly specified objective function and we suggested lower 
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Figure 1. P-P graphs when: X1,X2 and X3 are truly predictive, X1,X2 and X7 are truly prognostic, and the rest 
nine biomarkers are irrelevant. Note that our 2nd-order approximation distinguishes perfectly between 
predictive and prognostic. 

order approximations. Lastly, we introduced a new graphical representation that captures 
the dynamics of biomarker ranking. 
       While in this paper we present results only from simulated datasets, we have a 
forthcoming work that applies our methodologies to a dataset coming from a real clinical 
trial on the progression free survival in a lung cancer study [8]. Our preliminary results 
confirm that the presence in the tumor of a mutation of the epidermal growth factor 
receptor (EGFR) gene is a predictive biomarker for two different treatments: gefitinib 
versus carboplatin–paclitaxel.  
      Another interesting future direction is to improve the interpretability of the P-P 
graphs. For example, in the 1st-order approach, instead of plotting the ranking score of 
each biomarker, we can plot a p-value, derived from a univariate testing of whether the 
biomarker is predictive or prognostic. 
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