
Faster ECC over F2571

(feat. PMULL)

Hwajung Seo
Institute for Infocomm Research (I2R), Singapore

Abstract. In this paper, we show efficient elliptic curve cryptography implementa-
tions over advanced ARMv8 processor. We improve the previous binary field mul-
tiplication over the processor with finely aligned multiplication and incomplete re-
duction techniques by taking advantages of advanced 64-bit polynomial multiplica-
tion (PMULL). This approach shows performance enhancements by a factor of 1.34
times than previous implementation of binary field multiplication. For the point
addition and doubling, the special types of multiplication, squaring and addition
operations are combined together and optimized, where one reduction operation
is optimized in each case. The scalar multiplication is implemented in constant-
time window method, which is secure against timing attacks. Finally the proposed
implementations achieved 759,630/331,944 clock cycles for random/fixed scalar
multiplications for B-571 curve over ARMv8, respectively.

Keywords. ARMv8, Elliptic Curve Cryptography, Binary Field Multiplication

1. Introduction

Elliptic Curve Cryptography (ECC) is the most popular Public Key Cryptography (PKC)
in pre-quantum cryptography. However due to its high complexities of computations, the
execution timing is serious problem for the practical applications. Particularly, the bi-
nary field multiplication is regarded as the most expensive operation in the elliptic curve
cryptography. Many researchers have studied the high-speed implementation of binary
field multiplication in order to improve the performance. The classical binary field mul-
tiplication performs the bitwise exclusive-or operation with the operands and the inter-
mediate results when the target bit of operand is set to one [13,10,11]. The alternative
approach takes advantages of the pre-computed Look-Up Table (LUT). The method con-
structs the part of results in advance and then the logical operations are replaced into
the simple memory access operations [6,9]. Recently, the modern embedded processors
support the advanced built-in polynomial multiplication. ARMv7 architecture supports
VMULL.P8 operation which computes eight 8-bit wise polynomial multiplications with
single instruction and then outputs eight 16-bit results to the 128-bit NEON register.
In [2], Câmara et al. shows that the efficient 64-bit polynomial multiplication with the
VMULL.P8 instruction. Since the VMULL.P8 instruction only provides the outputs in vec-
torized formats, the author presents noble approaches to align the vectorized formats into
sequential results. After then multiple levels of Karatsuba multiplications are applied
to various binary field multiplications ranging from F2251 , F2283 to F2571 . The advanced

A Systems Approach to Cyber Security
A. Roychoudhury and Y. Liu (Eds.)
© 2017 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-744-3-97

97

ARMv8 architecture supports PMULL instruction which computes the 64-bit wise poly-
nomial multiplication. This nice property improves the polynomial multiplication sig-
nificantly over ARMv8. In CT-RSA’15, Gouvêa and López presented compact imple-
mentations of GCM based Authenticated Encryption (AE) with the built-in AES encryp-
tion and PMULL instruction [3]. Since the 128-bit polynomial multiplication only needs 4
times of PMULL instructions (64-bit polynomial multiplication), the basic multiplication
approach shows better performance than asymptotically faster Karatsuba multiplication.
After then the authors evaluate the built-in AES encryption, which improves the perfor-
mance of AES–GCM by about 11 times than that of ARMv7, which does not support
AES and polynomial multiplication with hardware accelerators. In [12], authors evalu-
ated the PMULL based binary field multiplication techniques ranging from 192-bit to 576-
bit for ECC. From 256-bit polynomial multiplication, Karatsuba multiplications show
higher performance than traditional approaches. However, the paper does not explore the
full implementations of ECC with proposed binary field multiplication and we found a
room to improve the performance further from the work.

In this paper, we present efficient implementation techniques for B-571 on ARMv8.
We improve the previous binary field multiplication by introducing finely aligned multi-
plication and incomplete reduction technique. The proposed technique improves the per-
formance by a factor of 1.34 times than previous Seo et al.’s implementations [12]. For
the point addition and doubling, we perform the combined reduction on special types of
binary field multiplication, squaring and addition operations. The scalar multiplication is
implemented in window method, which ensures constant timing and security against tim-
ing attacks. Finally, we set the speed record for B-571 on ARMv8, which performs the
unknown/fixed scalar multiplications within 759,630/331,944 clock cycles, respectively.

The remainder of this paper is organized as follows. In Section 2, we recap the B-
571 curve, target ARM processor and previous polynomial multiplication on ARMv8. In
Section 3, we propose the efficient ECC implementations on ARMv8. In Section 4, we
evaluate the performance of proposed methods. Finally, Section 5 concludes the paper.

2. Related Works

2.1. Elliptic curve over F2571

The 571-bit elliptic curve standardized in [1] and the finite field F2m is defined by:

f (x) = x571 + x10 + x5 + x2 +1

The curve E : y2 + xy = x3 +ax2 +b over F2m is defined by:

a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000001

H. Seo / Faster ECC over F2571 (feat. PMULL)98

b = 02F40E7E 2221F295 DE297117 B7F3D62F 5C6A97FF CB8CEFF1 CD6BA8CE

4A9A18AD 84FFABBD 8EFA5933 2BE7AD67 56A66E29 4AFD185A 78FF12AA

520E4DE7 39BACA0C 7FFEFF7F 2955727A

and group order is defined by:

n = 03FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF E661CE18 FF559873 08059B18 6823851E C7DD9CA1

161DE93D 5174D66E 8382E9BB 2FE84E47

2.2. ARM Processor

Advanced RISC Machine (ARM) is an Instruction Set Architecture (ISA) for high-
performance embedded applications. ARM architecture has nice properties including
low-power consumption and high code density. The most advanced ARMv8 processor
supports both 32-bit (AArch32) and 64-bit (AArch64) architectures. Particularly the pro-
cessor supports a single-instruction multiple-data (SIMD) instruction sets namely NEON
engine. The processor has 32 64-bit registers (X0-X31) and 32 128-bit NEON registers
(V0-V31). Particularly, 64-bit wise polynomial multiplication instructions (PMULL and
PMULL2) are available. The PMULL instruction uses the lower 64-bit part in 128-bit reg-
ister for the input, while the PMULL2 instruction uses the higher 64-bit part in 128-bit
register for the input [3].

2.3. Polynomial Multiplication on ARMv8

In [12], authors evaluated the PMULL instructions for the various polynomial multiplica-
tions ranging from 192-bit to 576-bit. Particularly, the authors perform the three terms
of Karatsuba multiplication for 576-bit case, which reduces the number of 192-bit wise
multiplication from 9 to 6 [7,14,5]. The author claims that basic approach for 192-bit
case is more efficient than Karatsuba multiplication on the ARMv8 architecture, since
additional number of addition operations are larger than optimized multiplication opera-
tions. The detailed program codes are drawn in Algorithm 1. The approach requires the
9 64-bit wise polynomial multiplications. The partial products (A[0]×B[1], A[1]×B[0],
A[1]× B[2], A[2]× B[1]) are computed and shifted by 64-bit. The shifted results are
accumulated to the intermediate results for partial products (A[0]× B[0], A[0]× B[2],
A[1]×B[1], A[2]×B[0], A[2]×B[2]).

3. Proposed Method

3.1. Optimization for Finite Field Operation

The polynomial addition/subtraction can be performed with bit-wise exclusive-or in-
structions on both operands. For the 576-bit case, each operand is loaded to the 5 128-bit

H. Seo / Faster ECC over F2571 (feat. PMULL) 99

Algorithm 1 192-bit Polynomial Multiplication in Program Codes [12]

Require: 192-bit operands A[2 ∼ 0] (v0, v1) and B[2 ∼ 0] (v5, v6).
Ensure: 384-bit result C[5 ∼ 0]← A[2 ∼ 0]×B[2 ∼ 0] (v10, v11, v12).

1: pmull v10.1q, v0.1d, v5.1d {A[0]×B[0]}
2: pmull v11.1q, v0.1d, v6.1d {A[0]×B[2]}
3: pmull2 v28.1q, v0.2d, v5.2d {A[1]×B[1]}
4: eor.16b v11, v11, v28

5: pmull v28.1q, v1.1d, v5.1d {A[2]×B[0]}
6: eor.16b v11, v11, v28

7: pmull v12.1q, v1.1d, v6.1d {A[2]×B[2]}
8: ext.16b v30, v0, v0, #8

9: pmull2 v29.1q, v30.2d, v5.2d {A[0]×B[1]}
10: pmull v28.1q, v30.1d, v5.1d {A[1]×B[0]}
11: eor.16b v29, v29, v28

12: pmull v30.1q, v30.1d, v6.1d {A[1]×B[2]}
13: ext.16b v28, v1, v1, #8

14: pmull2 v28.1q, v28.2d, v5.2d {A[2]×B[1]}
15: eor.16b v30, v30, v28

16: ext.16b v28, v31, v29, #8

17: ext.16b v29, v29, v30, #8

18: ext.16b v30, v30, v31, #8

19: eor.16b v10, v10, v28

20: eor.16b v11, v11, v29

21: eor.16b v12, v12, v30

NEON registers (5 = �4.5�= � 576
128�) and 5 times of bit-wise exclusive-or operations are

performed.
The binary field multiplication is the most expensive operation in the finite field op-

erations. For 576-bit case, Seo et al. proposed the three-term of Karatsuba multiplication
[12]. Each term performs the classical 192-bit wise polynomial multiplication (See Al-
gorithm 1). The 192-bit multiplication always outputs the 384-bit results in 3 consecutive
128-bit registers. However, this alignment style requires additional 64-bit wise shift op-
erations to get aligned intermediate results in three steps for 576-bit multiplication (See
Step 4, 8, 10 in Algorithm 2). In order to hide these latencies, we used both previous
and shifted 192-bit polynomial multiplication. In Algorithm 3, shifted version of mul-
tiplication is described. Unlike previous approach described in Algorithm 1, the partial
products (A[0]×B[0], A[0]×B[2], A[1]×B[1], A[2]×B[0], A[2]×B[2]) are shifted by
64-bit. The shifted results are accumulated to the intermediate results for partial products
(A[0]×B[1], A[1]×B[0], A[1]×B[2], A[2]×B[1]). The 64-bit shifted results are stored
into 4 consecutive NEON registers (v16, v17, v18, v19) where the least significant
64-bit of v16 and most significant 64-bit of v19 are set to zero. The detailed 576-bit mul-
tiplication is described in Algorithm 2. The 576-bit polynomial multiplication requires 6
192-bit polynomial multiplications in Step 3, 4, 5, 8, 9 and 10. The results are required to
be shifted by 192, 384 or 576-bit to the left before intermediate result are accumulated.
The 384-bit shift case does not require additional shift operations on the 128-bit register.
However, two cases (192 and 576-bit) requires 64-bit wise shift to the left to align the
results (Step 4, 8, 10). In this case, we used the shifted 192-bit polynomial multiplication

H. Seo / Faster ECC over F2571 (feat. PMULL)100

Algorithm 2 Aligned Polynomial Multiplication for 576-bit

Require: 576-bit operands A[8 ∼ 0] and B[8 ∼ 0].
Ensure: 1152-bit result C[17 ∼ 0]← A[8 ∼ 0]×B[8 ∼ 0].

1: A ←{AH ,AM,AL}← {(A[8],A[7],A[6]),(A[5],A[4],A[3]),(A[2],A[1],A[0])}
2: B ←{BH ,BM,BL}← {(B[8],B[7],B[6]),(B[5],B[4],B[3]),(B[2],B[1],B[0])}
3: CH ← (AH ×192 BH)� 384 {Algorithm 1}
4: CM ← (AM ×192 BM)� 192 {Algorithm 3}
5: CL ← AL ×192 BL {Algorithm 1}
6: T ←CH ⊕CM ⊕CL
7: C ← T ⊕ (T � 192)⊕ (T � 384)
8: CH ← ((AH ⊕AM)×192 (BH ⊕BM))� 576 {Algorithm 3}
9: CM ← ((AH ⊕AL)×192 (BH ⊕BL))� 384 {Algorithm 1}

10: CL ← ((AM ⊕AL)×192 (BM ⊕BL))� 192 {Algorithm 3}
11: C ←CH ⊕CM ⊕CL ⊕C

Algorithm 3 (Shifted) 192-bit Polynomial Multiplication in Program Codes

Require: 192-bit operands A[2 ∼ 0] (v1, v2) and B[2 ∼ 0] (v6, v7).
Ensure: 384-bit result C[5 ∼ 0]← A[2 ∼ 0]×B[2 ∼ 0] (v16, v17, v18, v19).

1: pmull v17.1q, v1.1d, v6.1d {A[0]×B[0]}
2: pmull v18.1q, v1.1d, v7.1d {A[0]×B[2]}
3: pmull2 v28.1q, v1.2d, v6.2d {A[1]×B[1]}
4: eor.16b v18, v18, v28

5: pmull v28.1q, v2.1d, v6.1d {A[2]×B[0]}
6: eor.16b v18, v18, v28

7: pmull v19.1q, v2.1d, v7.1d {A[2]×B[2]}
8: ext.16b v16, v31, v17, #8

9: ext.16b v17, v17, v18, #8

10: ext.16b v18, v18, v19, #8

11: ext.16b v19, v19, v31, #8

12: ext.16b v30, v1, v1, #8

13: pmull2 v29.1q, v30.2d, v6.2d {A[0]×B[1]}
14: pmull v28.1q, v30.1d, v6.1d {A[1]×B[0]}
15: eor.16b v29, v29, v28

16: pmull v30.1q, v30.1d, v7.1d {A[1]×B[2]}
17: ext.16b v28, v2, v2, #8

18: pmull2 v28.1q, v28.2d, v6.2d {A[2]×B[1]}
19: eor.16b v30, v30, v28

20: eor.16b v17, v17, v29

21: eor.16b v18, v18, v30

described in Algorithm 3. For the other three cases (Step 3, 5, 9), we used the previous
approach described in Algorithm 1. By using shifted approach, we can avoid three times
of 64-bit wise shift operations in each multiplication. In instruction set level, 12 times of
extraction instructions are optimized.

The polynomial squaring is a linear operation, since the result is obtained by insert-
ing a 0 bit between consecutive bits of operand. By using the 64-bit polynomial multi-

H. Seo / Faster ECC over F2571 (feat. PMULL) 101

Algorithm 4 576-bit Polynomial Squaring

Require: 576-bit Operand A[8 ∼ 0].
Ensure: 1152-bit Result C[17 ∼ 0]← A[8 ∼ 0]×A[8 ∼ 0].

1: for i = 0 to 8 by 1 do

2: {C[2× i+1]||C[2× i]} ← A[i]×A[i]
3: end for

Algorithm 5 Fast Reduction over F2571

Require: 576-bit (complete) or 1152-
bit (incomplete) operands A, com-
plete reduction.

Ensure: 571-bit (complete) or 576-bit
(incomplete) result C.

1: if complete reduction then

2: r ←0x425

3: AL ← A mod 2571

4: AH ← A div 2571

5: T ← AH × r
6: C ← AL ⊕T

7: else

8: r ←0x84A0

9: AL ← A mod 2576

10: AH ← A div 2576

11: T ← AH × r
12: T ← AL ⊕T
13: TL ← T mod 2576

14: TH ← T div 2576

15: T ← TH × r
16: C ← TL ⊕T
17: end if

plication (PMULL) instruction, we can compute the 64-bit wise squaring with PMULL and
PMULL2 instructions, since each instruction outputs only half results at a time. In Algo-
rithm 4, the 576-bit wise squaring operation is drawn. The 576-bit operand requires 18
(� 571

64 �×2) times of PMULL instructions.
The m-bit polynomial multiplication/squaring operations produce the values of de-

gree at most 2m-bit, which must be reduced by modulo. When the modulo is smaller
than operand size (64-bit) of PMULL instruction, we can perform the multiplication on
higher parts (> m) by modulo. The modulo of binary field F2571 is defined by f (x) =
x571+x10+x5+x2+1, which is only 11-bit modulo so we can use 64-bit wise PMULL in-
struction for polynomial multiplication. However, 571-bit modulo is not efficient over the
64-bit machine since this requires 5-bit wise shift operations to align the results. Alterna-
tively, we choose the 64-bit machine friendly modulo (f (x) = x576 +x15 +x10 +x7 +x5)
and incomplete reduction. This approach avoids the number of 5-bit wise shift opera-
tions and complete results are also obtained by performing the complete reduction before
outputting the results. The detailed reduction process is available in Algorithm 5. If the
complete reduction is selected, the modulo (r) is set to 0x425 representing the values
(x10 + x5 + x2 + 1). In Step 3, the part of A which is lower than 571-bit is extracted to
AL. In Step 4, the part of A which is higher than 571-bit is extracted to AH . In Step 5, the
higher part (AH) is multiplied by modulus (r). In Step 6, the results are added to the lower
part (AL). In case of incomplete reduction, the modulus (r) is set to 0x84A0 representing
the values (x15 + x10 + x7 + x5). In Step 9, the part of A which is lower than 576-bit is
extracted to AL. In Step 10, the part of A which is higher than 576-bit is extracted to AH .
In Step 11, the higher part (AH) is multiplied by modulus (r). In Step 12, the lower part
(AL) are added to the intermediate results T . In Step 13, the part of T which is lower

H. Seo / Faster ECC over F2571 (feat. PMULL)102

than 576-bit is extracted to TL. In Step 14, the part of T which is higher than 576-bit is
extracted to TH . In Step 15, the higher part (TH) is multiplied by modulus (r). In Step 16,
the lower part (TL) are added to the intermediate results T .

For fast and secure inversion operation, we used the Itoh-Tsujii algorithm [4], which
is an optimization of inversion through Fermat’s little theorem (f (x)−1 = f (x)2m−2),
ensuring the constant time computations. The algorithm uses a repeated field squaring
and multiplication operations for f (x)2k

, which follows a chains of multiplication and
squaring sequences (f1 → f2 → f4 → f8 → f16 → f17 → f34 → f35 → f70 → f71 →
f142 → f284 → f285 → f570). The inversion algorithm requires 13 multiplication and 570
squaring operations.

3.2. Optimization for Scalar Multiplication

In order to perform the scalar multiplication, the point addition and doubling operations
are required, which consist of a number of finite field operations. Depending on specific
coordinates, the number of finite field operations are varied each other. The point addi-
tion in López-Dahab/affine coordinates requires 8 multiplication (M), 5 squaring (S) and
1 a-multiplication (a-M). Alternative point addition in López-Dahab coordinates requires
13M and 5S. For the point doubling in López-Dahab coordinates requires 3M, 5S, 1a-M
and 1 b-multiplication (b-M). Particularly, the variable (a) is set to 1 in the B-571 curve so
the a-M operation is free. The binary field multiplication and squaring operations are per-
formed by following the implementation techniques described in Section 3.1. A sequence
of multiplication, squaring and addition operations are optimized again by combining the
reduction operations . This sequence of field operations involve a type (A×B+C×D).
The straight-forward implementation of type requires 2 multiplication, 2 reduction and
1 addition operations. One reduction operation can be optimized by performing the mul-
tiplication and addition operations in advance [8]. Similar a type (A2 +C ×D) is also
optimized from 1 squaring, 1 multiplication, 2 reduction and 1 addition operations to
1 squaring, 1 multiplication, 1 reduction and 1 addition operations. We employed the
Negre and Robert techniques for the point addition in López-Dahab/affine coordinates
and doubling in López-Dahab coordinates. For point addition in López-Dahab/affine co-
ordinates described in Algorithm 6, Step 13 and 19 can be optimized through optimal
(A2 +C×D) and (A×B+C×D) types. For point doubling in López-Dahab coordinates
described in Algorithm 7, Step 12 can be optimized through optimal (A×B+C ×D)
type. We extended this technique to point addition in López-Dahab coordinates in Al-
gorithm 8. The Step 17, 18 and 20 include the (A×B+C×D) type and this approach
optimizes the 3 reduction operations in each point addition operation.

The scalar multiplication is implemented in window method. This algorithm always
performs the point addition and doubling operations in each bit and our implementations
of finite field arithmetic are also regular fashion, which ensure constant-time computation
and security against Simple Power Analysis (SPA). For unknown point, we used point
addition/doubling in López-Dahab coordinates with window methods and for fixed point
we used point addition in López-Dahab/affine coordinates and doubling in López-Dahab
coordinates with window methods.

H. Seo / Faster ECC over F2571 (feat. PMULL) 103

Algorithm 6 Optimization for Point Addition in López-Dahab/affine coordinates [8]

Require: Point P1 (X1,Y 1,Z1) in
López-Dahab coordinates and P2
(X2,Y 2,1) in affine coordinates

Ensure: Point P3 (X3,Y 3,Z3) in
López-Dahab coordinates

1: t0 ← Z12

2: t1 ← Y 2× t0
3: k0 ← Y 1+ t1
4: t2 ← X2×Z1
5: k1 ← X1+ t2
6: k2 ← k1×Z1
7: Z3 ← k22

8: k4 ← X2×Z3

9: t3 ← k12

10: t4 ← a× k2
11: t5 ← k0+ t3
12: t6 ← t5+ t4
13: X3 ← k02 + k2× t6 {A2 +C×D}
14: t7 ← k0× k2
15: t8 ← k4+X3
16: t9 ← t7+Z3
17: t10 ← Y 2+X2
18: t11 ← Z32

19: Y 3 ← t10× t11+ t8× t9 {A×B+

C×D}

Algorithm 7 Optimization for Point Doubling in López-Dahab coordinates [8]

Require: Point P1 (X1, Y1, Z1) in
López-Dahab coordinates

Ensure: Point P3 (X3, Y3, Z3) in
López-Dahab coordinates

1: k0 ← Z12

2: t0 ← k02

3: k1 ← b× t0
4: k2 ← X12

5: Z3 ← A× k2

6: t1 ← k22

7: X3 ← t1+ k1
8: t2 ← Y 12

9: t3 ← a×Z3
10: t4 ← t2+ t3
11: t5 ← t4+ k1
12: Y 3 ← t5×X3+Z3× k1 {A×B+

C×D}

Algorithm 8 Optimization for Point Addition in López-Dahab coordinates [8]

Require: Point P1 (X1,Y 1,Z1) and P2
(X2,Y 2,Z2) in López-Dahab coor-
dinates

Ensure: Point P3 (X3,Y 3,Z3) in
López-Dahab coordinates

1: k0 ← X1×Z2
2: k1 ← X2×Z1
3: k2 ← k02

4: k3 ← k12

5: k4 ← k0+ k1
6: k5 ← k2+ k3
7: t0 ← Z22

8: k6 ← Y 1× t0
9: t1 ← Z12

10: k7 ← Y 2× t1
11: k8 ← k6+ k7
12: k9 ← k8× k4
13: t2 ← Z1×Z2
14: Z3 ← k5× t2
15: t3 ← k7× k3
16: t4 ← k2× k6
17: X3 ← k1× t4+ k0× t3 {A×B+

C×D}
18: t5 ← k5× k6+ k0× k9 {A×B+

C×D}
19: t6 ← k9+Z3
20: Y 3 ← t6×X3+ t5× k5 {A×B+

C×D}

H. Seo / Faster ECC over F2571 (feat. PMULL)104

Table 1. Comparison results of binary field multiplication for B-571 curve

Algorithm Clock cycle

Seo et al. [12] 132
Proposed Method 99

Table 2. Performance evaluations of B-571 curve, where w is window size

Operation Clock cycle

Binary Field Operation

Multiplication 99
Squaring 24
Inversion 31,232

Group Operation

Point addition (LD/affine) 1,107
Point addition (LD) 1,537
Point doubling (LD) 609

Scalar Multiplication

Unknown point (w = 4) 759,630
Fixed point (w = 4) 331,944

4. Evaluation

We used Xcode (ver 6.3.2) as a development IDE and programmed over iPad Mini2
(iOS 8.4). The iPad Mini2 equipped Apple A7 with 64-bit architecture operated in the
frequency of 1.3GHz. The program is written in C and assembly codes and complied
with -Ofast optimization level. The timing are acquired through the clock cycles of real
device.

In Table 1, the comparison results of binary field multiplication over B-571 curve
are drawn. We only compared results with Seo et al. [12] since SUPERCOP benchmark
tool does not support the iOS operating system which is required for our experiments
and the work by Gouvêa and J. López is only provide the GCM operations [3]. The
Seo et al. achieved the high performance with three-term of Karatsuba multiplication
for 576-bit polynomial multiplication and fast reduction techniques. In our implementa-
tion, we further improved performance by a factor of 1.34 times with the finely aligned
multiplications and incomplete reduction techniques.

In Table 2, we listed the whole results of B-571 implementations. Unfortunately,
there is no paper about ECC implementations on ARMv8. We only provide our results.
The squaring operation is linear computations, which requires small number of clock cy-
cles. The inversion operation is implemented in Fermat’s little theorem, which requires
570 squaring and 13 multiplication operations. For group operations, three different point
operations are evaluated. The doubling in López-Dahab coordinates shows the lowest
clock cycles. The point addition in López-Dahab coordinates shows the highest clock cy-
cles. Finally, the scalar multiplication is efficiently implemented with window methods.
In the fixed point, points can be pre-computed and the number of doubling operations
are optimized. In this paper, we explore the medium window size (w = 4) but this can be
easily extended to the long window size (w > 4) by sacrificing the RAM storages.

H. Seo / Faster ECC over F2571 (feat. PMULL) 105

5. Conclusion

In this paper, we show efficient finite field and group operations for B-571 implemen-
tations over ARMv8. We optimized the binary field arithmetics by introducing the sev-
eral optimization techniques. The group operations are also improved by reducing the
number of reduction operations in point addition and doubling operations. Finally, we
achieved the high speed implementation of B-571 implementation over ARMv8.

References

[1] Recommended elliptic curve domain parameters. Standards for Efficient Cryptography Group, Certicom
Corp, 2000.

[2] D. Câmara, C. P. Gouvêa, J. López, and R. Dahab. Fast software polynomial multiplication on ARM pro-
cessors using the NEON engine. In International Conference on Availability, Reliability, and Security,
pages 137–154. Springer, 2013.

[3] C. P. Gouvêa and J. López. Implementing GCM on ARMv8. In Cryptographers Track at the RSA
Conference, pages 167–180. Springer, 2015.

[4] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in GF(2m) using normal
bases. Information and computation, 78(3):171–177, 1988.

[5] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. In Soviet physics
doklady, volume 7, page 595, 1963.

[6] J. López and R. Dahab. High-speed software multiplication in GF(2m). In International Conference on
Cryptology in India, pages 203–212. Springer, 2000.

[7] P. L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE Transactions on Computers,
54(3):362–369, 2005.

[8] C. Negre and J.-M. Robert. Impact of optimized field operations AB, AC and AB+CD in scalar multipli-
cation over binary elliptic curve. In International Conference on Cryptology in Africa, pages 279–296.
Springer, 2013.

[9] L. B. Oliveira, D. F. Aranha, C. P. Gouvêa, M. Scott, D. F. Câmara, J. López, and R. Dahab. TinyPBC:
Pairings for authenticated identity-based non-interactive key distribution in sensor networks. Computer
Communications, 34(3):485–493, 2011.

[10] H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim. Binary and prime field multiplication for public key
cryptography on embedded microprocessors. Security and Communication Networks, 7(4):774–787,
2014.

[11] H. Seo, Z. Liu, J. Choi, and H. Kim. Karatsuba–block-comb technique for elliptic curve cryptography
over binary fields. Security and Communication Networks, 8(17):3121–3130, 2015.

[12] H. Seo, Z. Liu, Y. Nogami, J. Choi, and H. Kim. Binary field multiplication on ARMv8. Security and
Communication Networks, 2016.

[13] M. Shirase, Y. Miyazaki, T. Takagi, and H. Dong-Guk. Efficient implementation of pairing-based cryp-
tography on a sensor node. IEICE transactions on information and systems, 92(5):909–917, 2009.

[14] A. Weimerskirch and C. Paar. Generalizations of the Karatsuba algorithm for efficient implementations.
IACR Cryptology ePrint Archive, 2006:224, 2006.

H. Seo / Faster ECC over F2571 (feat. PMULL)106

