
Chat-App Decryption Key Extraction

Zhongmin DAI, SUFATRIO, Tong-Wei CHUA, Dinesh Kumar BALAKRISHNAN,
Vrizlynn L. L. THING

Institute for Infocomm Research, Singapore
Email: {daiz, sufatrio, twchua, dineshb, vriz}@i2r.a-star.edu.sg

Abstract. Recent years have seen a pervasive usage of mobile-based instant mes-
saging apps, which are popularly known as chat apps. On users’ mobile devices,
chat logs are usually stored encrypted. This paper is concerned with discovering the
decryption key of chat-log database files as they are used by popular chat apps like
WhatsApp and WeChat. We propose a systematic and generalized information-flow
based approach to recovering the decryption key by taking advantage of both static
and dynamic analyses. We show that, despite the employed code obfuscation tech-
niques, we can perform the key discovery process on relevant code portions. Fur-
thermore, to the best of our knowledge, we are the first to detail the employed string
de-obfuscation, encrypted database file structure, and decryption-key formulation
of the latest WhatsApp with crypt12 database. We also demonstrate how our key-
extraction techniques can decrypt encrypted WhatsApp and WeChat database files
that originate from a target device. Additionally, we show how we can construct a
version of WhatsApp or WeChat that simulates the key generation processes of a
remote target device, and recover the keys. Lastly, we analyze why our technique
can work on widely-popular chat apps, and mention measures that can be adopted
by chat-app developers to better protect the privacy of billions of their users.

Keywords. Mobile security, privacy protection, Android, mobile apps, chat apps

1. Introduction

The unprecedented proliferation of mobile devices in recent years has led to a pervasive
usage of mobile-based instant messaging applications, which are also popularly known
as mobile chat apps. Such apps allow mobile users to instantly exchange text messages
and media files to each other on either an 1-to-1 or user-group basis. On user devices, chat
logs are stored in database files, and are usually encrypted. Decryption of the chat-log
files thus represents a very serious threat to the privacy of mobile users.

This paper is concerned with discovering the decryption key (password) of chat-log
database files as they are used by two widely-popular chat apps, namely WhatsApp [1]
and WeChat [2]. It proposes a systematic and generalized approach to discovering the
decryption key of both apps by inspecting the flow of sensitive key-related information,
particularly towards the employed cryptographic libraries. Using the two popular apps as
real-world examples, we show that, despite the employed code obfuscation techniques,
we can still discover the actual decryption keys in use and gain understanding of the key

Through Information Flow Analysis

A Systems Approach to Cyber Security
A. Roychoudhury and Y. Liu (Eds.)
© 2017 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-744-3-3

3

construction process. Furthermore, to the best of our knowledge, we are the first to detail
the employed string de-obfuscation, encrypted database file structure, and decryption-
key formulation of WhatsApp app that uses the latest (as of October 2016) crypt12
database file.

To realize our information-flow analysis, we make use of a combination of both dy-
namic and static analyses. In our work, which is implemented on Android, we employ
both the Dynamic Dalvik Instrumentation (DDI) [3,4] and Android Dynamic Binary In-
strumentation (ADBI) [5,6] dynamic analysis toolkits in order to observe database-file
access operations and to recover the decryption keys in use. We also utilize static anal-
ysis tools, including Apktool [7], jadx Dalvik-to-Java decompiler [8], and taint track-
ers [9,10], to assist us in understanding the code structure, component interactions, and
decryption-key information flow within the target chat apps.

While there exist prior articles that explain how decryption keys of some specific
older versions of WhatsApp and WeChat are derived [11,12], our work takes a general-
ized approach to observing key-related information flow of the chat apps. Hence, while
existing scripts target only very specific older or current versions of chat apps, our pro-
posed technique can apply to different chat-app versions as long as they retain their same
design and practice of employing cryptographic libraries and passing the key information
into the libraries.

Our experiments done on a rooted device show how our analysis of WhatsApp and
WeChat allows us to discover the decryption keys and all cipher-operation parameters.
Subsequently, we can extend the key-extraction techniques by showing how we can con-
struct a WhatsApp and WeChat app version that can simulate other devices’ key gener-
ation process. As a result, we will be able to decrypt encrypted WhatsApp and WeChat
log database files that originate from a remote target device, thus discovering the target
mobile user’s chat activity information.

Given the huge user base of both analyzed chat apps, our decryption-key discovery
results are therefore very important. Hence, we also provide an in-depth analysis of why
our proposed technique can still discover the keys of highly-popular chat apps. Based
on our root-cause analysis results, we propose concrete counter measures that can be
adopted by chat-app developers to improve their future app versions and better protect
the privacy of billions of their users.

In summary, our work in this paper makes the following contributions:

• We propose a systematic and generalized approach to discovering the decryption
key of chat apps by inspecting the flow of key-related information particularly
towards their employed third-party cryptographic libraries.

• Using a set of experiments on a rooted device, we demonstrate how we obtain the
decryption key and cipher-operation parameters of both WhatsApp and WeChat.

• To the best of our knowledge, we are the first to detail the employed string de-
obfuscation, encrypted database file structure, and decryption-key formulation of
the latest crypt12 WhatsApp database file.

• We elaborate how we can derive a chat-app version that can simulate other de-
vices’ key generation process in order to decrypt encrypted log files that originate
from a remote target device.

• Lastly, we provide an in-depth analysis on why our technique can work on highly-
popular apps, and suggests counter measures that can be adopted by chat-app
developers to prevent potential attacks.

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis4

The remainder of this paper is organized as follows. Section 2 gives some back-
ground and mentions related work. Section 3 elaborates our proposed chat-app analysis
approach. Section 4 reports our experiments on WhatsApp and WeChat. Section 5 ex-
plains how we can derive a chat-app version that simulates other devices’ key generation
process. Section 6 suggests how chat-app developers can improve their future apps, and
also discusses ethical considerations of our work. Finally, Section 7 concludes this paper.

2. Background and Related Work

2.1. Background

We give some background on WeChat and WhatsApp apps that we analyzed. We also
briefly describe the dynamic and static analysis tools employed in analyzing the apps.

2.1.1. Popular Chat Apps and Their Database Files

WeChat [2] from Tencent is among the most popular chat apps. It is originally known
as Weixin, and has a huge user base particularly in Asia [13]. The latest company report
mentions that the combined monthly active users (MAU) of WeChat and Weixin in 2015
reached 697 million, which is an increase of 39% from the previous year.

In Android, WeChat private data is stored under the /data/data/com.tencent.mm
folder. Two sub-folders of interest are the MicroMsg and the shared prefs. Other than
several configuration files, the MicroMsg folder contains a folder that has a name re-
sembling a random alphanumeric string, e.g. b98a831a089cef3031385d56a0f51927.
This folder contains two encrypted database files, namely enFavourite.db and
EnMircroMsg.db. They are both encrypted using SQLCipher [14], which is an open-
source encryption extension to SQLite. SQLCipher provides a transparent database en-
cryption interface to SQLite by wrapping SQLite method invocations so that encryption
and decryption can be carried out before the data is written into the database or after it
is read from the database, respectively. The shared prefs folder, meanwhile, contains
.xml files that store key-value pairs of WeChat settings.

WhatsApp [1], which is now owned by Facebook Inc., is currently the most popular
chat app [15]. In February 2016, WhatsApp reported that it had 1 billion users [16]. For
Android devices, WhatsApp stores its log within two unencrypted SQLite database files
msgstore.db and wa.db under the protected /data/data/com.whatsapp/databases
folder. Additionally, WhatsApp keeps an encrypted backup of the msgstore.db, which
is wrapped by a header and trailer containing several pieces of account information, on
the phone’s SD card. This file is stored with the .crypt〈version no〉 filename extension,
with crypt12 being the most recent one as of October 2016. The file is utilized when the
mobile user transfers his/her chat log over to a new phone while retaining the existing
WhatsApp phone number [17].

Similar to WeChat, there exist articles in the literature that explain how to obtain the
key of the encrypted database file of specific WhatsApp version. For instance, [11] de-
rives the key for the now-defunct WhatsApp crypt7 database file. Our work reported in
this paper, instead, takes a generalized approach to discovering the decryption key based
on an information-flow analysis of the targeted chat apps.

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis 5

2.1.2. Dynamic Analysis using DDI/ADBI Toolkits

We perform our dynamic analysis of chat apps on Android by using the Dynamic Dalvik
Instrumentation (DDI) and Android Dynamic Binary Instrumentation (ADBI) toolkits.
The DDI toolkit [3,4] is employed to monitor the Dalvik code component of a target
Android app. It performs an in-line hooking technique of Dalvik-method entry points,
and diverts the invocation of a target Dalvik method into a correspondingly added JNI-
based native method. The added native method will ultimately invoke the original Dalvik
method, thus enabling itself as a code-instrumentation point for the original Dalvik
method. The DDI toolkit also supports the loading of additional Dalvik classes into a
process, thus allowing the instrumentation code to be partially written in Java.

The DDI toolkit operates on top of the ADBI toolkit [6,5], which implements the
hijacking utility of the ARM binary code. Due to its binary-level hooking feature, the
ADBI can hook the native code of an Android app. In our chat-app dynamic analysis, we
simply print out the parameters passed into the monitored methods, which can then be
viewed using the adb logcat command.

Using the DDI/ADBI toolkits, performing a dynamic monitoring and instrumenta-
tion of Android apps does not require any modification of the target apps, thus keep-
ing their signature intact. As such, the conducted analysis avoids any possible issues
with apps that perform self-integrity checks. This approach is thus more robust than app-
rewriting based monitoring approaches that perform Dalvik code injection. Furthermore,
the ability of monitoring the native code component of target apps represents a strong
feature, which is lacking in many other Android dynamic analysis tools. The DDI/ADBI
toolkits are previously utilized by Mulliner et al. [18] to modify the behavior of target
apps related to their in-app billing transactions with Google Play. One downside of the
DDI/ADBI toolkits is that they require a rooted device to run the analysis.

2.1.3. Static Analysis of Chat Apps

To inspect our target chat apps and their information flows, we utilize a few static analysis
tools, including Apktool [7], jadx decompiler [8], and IDA Pro [19]. The Apktool,
which incorporates a Dalvik disassembler called baksmali, is employed to extract a chat
app’s APK file and generate the smali code representation of the app’s Dalvik code. The
jadx Dalvik-to-Java decompiler is alternatively used to recover the Java source code of an
app. One benefit of obtaining smali code, which corresponds to the assembly of a Dalvik
bytecode, is that the code can be modified and reassembled to produce a modified app.
In contrast, a decompiler usually cannot fully recover an app’s Java source code, which
could be due to missing high-level (e.g. type) information or any applied preventive
obfuscation transformations [20]. The recovered Java source code is, nonetheless, easier
to inspect than smali code due to the shown high-level programming constructs. We
utilize the IDA Pro to analyze the native code component of the target apps.

To specifically inspect dataflow connection between two operations within our target
apps, we use FlowDroid [9] and DroidSafe [10]. The two tools can help identify data
flow from a specified source and sink method of a target app. We can thus utilize the
tools to inspect potential data flow between two operations of interest. Analyzing large
complex apps like WhatsApp and WeChat, however, take the two tools a long time to
complete and require a machine with an ample amount of RAM. In our experiments,
we managed to get some analysis results from FlowDroid after running it with several

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis6

optimization flags [21]. It is known, however, that FlowDroid may induce false negatives
as well as false positives [9,22]. We employed FlowDroid in our our experiments to help
point out any potential connections between operations of interest, which then provided
inputs to our manual analysis of the recovered code.

2.2. Related Work

There exist articles in the literature that describe how we can derive the decryption key
of specific WhatsApp and WeChat versions. The work [11] lists the steps to obtain the
key for WhatsApp’s now-defunct crypt7 database file. Meanwhile, [12] describes how
WeChat currently forms its key by taking the first seven characters of the MD5 hash
value of the WeChat user ID and the phone IMEI number. Instead of targeting specific
chat-app versions, our work in this paper takes a systematic and generalized information-
flow based approach to recovering the key by applying both static and dynamic anal-
yses. Hence, unlike [12,11], our proposed approach can apply to future chat-app ver-
sions provided that they still retain their existing basic design and practice of employing
third-party cryptographic libraries and passing the key information into the libraries.

There are a number of existing works that dynamically analyze Android apps to in-
spect the behavior of the apps. AppTrace [23] uses dynamic analysis of Android apps to
identify any malware execution. The work, however, does not aim to find the decryption
key of target app’s database files, which is the goal of our work. ConDroid [24] con-
siders the problem of locating critical, interesting or dangerous code, and enforcing its
execution for observability. It combines a static analysis with concolic execution in order
to observe an execution path that leads to a code section target. While the work enables
the potential observability of a target app’s code sections, it does not specifically aim to
discover the target app’s operations that hold or deal with decryption key of chat apps.
Moreover, the technique applies only to Android app bytecode, and cannot deal with any
included native code.

3. Decryption-Key Discovery using Information Flow Analysis and Execution

Monitoring

We now explain in this section the attack models that we assume on both target chat apps,
and the approach that we take in our decryption-key discovery process.

3.1. Attack Models

While both WeChat and WhatsApp use encryption to protect their log database files, the
encryption is used for different purposes and is executed differently. Hence, we consider
different attack models for the two chat apps as follows.

3.1.1. WeChat Attack Model

WeChat encrypts its database files using SQLCipher, and stores them under the protected
/data/data/com.tencent.mm folder. This encryption measure thus represents an ex-
tra layer of protection since, under normal circumstances on unrooted devices, all files

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis 7

under the folder are accessible only to WeChat app. This measure is therefore very useful
given the fact that the many Android users intentionally root their devices.

For WeChat, we thus consider the following two attack scenarios:

• (WC1) A locally-acquired, unlocked rootable device scenario: Here, we assume
that we have physically acquired an unlockable device with a WeChat app in-
stalled. Also, we assume that the device is rootable, either because it is already
rooted by its owner, or is vulnerable to a root exploit. As a result, we can access
the acquired device, including all WeChat related files, and perform a dynamic
instrumentation and monitoring to be elaborated later in Section 4.1.

• (WC2) A remote, trojanized and rootable device scenario: This scenario assumes
a remote target device with an Internet connection that, along with a WeChat in-
stalled, has our trojan app running. Similar to the scenario WC1, we also assume
that the device is rootable. This allows the trojan app to transfer via the Internet
the following information after its execution privilege elevation: WeChat database
files, shared preference file, and device information (e.g. IMEI number). For this
scenario, we need to first find out what methods to monitor as explained in Sec-
tion 4.1, and subsequently run a password-generating app as shown in Section 5.

As can be observed, the two considered scenarios above do assume a rootable target
device. One may thus argue that, given the prerequisite root privilege, other attack tech-
niques can alternatively be employed to reveal the targeted decryption key. In our attack
technique, the requirement for a rootable target device is put to solely extract WeChat
protected files on the target device. Using this information, our attack can then run in-
dependently on our own device, and does not require any further interactions with the
target device, which may be intrusive and could be observable by the mobile user.1

3.1.2. WhatsApp Attack Model

Under its protected /data/data/com.whatsapp/databases folder, WhatsApp stores
its database files as well as a key file /data/data/com.whatsapp/files/key in clear.
As mentioned earlier, WhatsApp also applies encryption to generate a backup database
file, which is normally stored on the device’s SD card, for a chat-log transfer purpose.
Our goal is thus to decrypt the encrypted backup database file without having access to
any of WhatsApp protected files.

We consider a WhatsApp attack model that enables us to obtain the following pieces
of required information:

• Encrypted WhatsApp backup database file stored on the SD card.
• Google account name that is used by mobile user, which can be obtained by

invoking the Android API call android.accounts.AccountManager.get-
AccountsByType("com.google") [25].

Three following attack scenarios are therefore possible:

• (WA1) A locally-acquired, unlockable device scenario: where we acquire an un-
lockable device, with a WhatsApp app installed and its SD card accessible. Since
the device is unlockable, we can thus install a simple (helper) app that reveals the
required Google account name.

1Notice that, for WhatsApp, our attack does not require a rootable target device as explained in Section 3.1.2.

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis8

• (WA2) An acquired SD card with a guessable Google account-name scenario:
where we acquire the SD card containing an encrypted WhatsApp database file,
and we can guess the used Google account name.

• (WA3) A remote, trojanized device scenario: where we target an Internet-
connected remote device installed with both WhatsApp and our trojan app. This
scenario allows the trojan app to send over both the required database file and
Google account name.

Unlike the two WeChat scenarios WC1 and WC2, all the three WhatsApp scenarios
WA1–WA3 above do not assume a rootable target device. To achieve our objective of
decrypting the database file under these three scenarios, we need to first perform the key-
discovery technique on our rooted device as elaborated in Section 4.2, and subsequently
run a password-generating app as expounded in Section 5.

3.2. Chat-App Execution Monitoring and Key Inspection

By using the DDI/ADBI toolkits, we are able to monitor the passed arguments to meth-
ods that perform database decryption operations, both at the the Dalvik and native code
levels. The DDI/ADBI toolkits additionally allow us to inspect the operations at the libc
level. Hence, we are also able to see all libc’s database-file related operations, together
with the name of the files. For our experiments, we customized the ADBI toolkit to pro-
vide better memory-map support. We increased the size of the char raw[] array, as
suggested in [26], from the default 80,000 to 800,000.

The main challenge faced in dynamically analyzing the target chat apps is determin-
ing the pertinent app methods that receive the decryption key strings as their arguments.
There are a high number of methods in large Android apps like WhatsApp and WeChat.
Hence, observing all methods is simply impractical. We thus need to shortlist the target
methods to monitor by applying static analysis on the chat apps.

Another problem in dynamically analyzing the target apps is ensuring that decryption-
key related operations are indeed executed by the apps. Fortunately, WeChat opens the
decrypted files right after the user logs on. WhatsApp uses the key when it reads the
encrypted duplicate database file as the user moves his/her chat log over to a new phone.
Additionally, the key is used when the user initiates a WhatsApp menu of performing a
chat-log backup, which we monitored in our experimentation.

3.3. Static Analysis of Key-Related Information Flow

We have discussed the challenge of determining the app methods that receive the decryp-
tion key strings as their arguments earlier. To shortlist the target methods to monitor, we
perform the following static analyses of the chat apps at both the Dalvik and native code
levels, together with several applied heuristics.

First, we generate a list of all native methods that are invoked by the Dalvik code of
a target chat app. For this, we use the Apktool to recover the smali code representation
of the app’s Dalvik code. In smali code, a native method is declared with .method fol-
lowed by method access identifiers, such as public/private and static, and the iden-
tifier native. An example is the declaration of .method private static native

nativeResetCancel(IZ)V. We can thus list all invoked native methods by searching a

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis 9

regular expression of “method .* native”. To further shortlist our target methods, we
consider methods that accept strings or array of bytes in their parameters.

Second, we analyze the information flow within the app’s native code by tracking
the method interaction using the IDA Pro. Starting from the native methods shortlisted
in the previous step, we employ the IDA Pro to observe the interaction among the native
methods. Again, we can opt to consider only methods that accept strings or array of bytes
in their parameters.

Third, we can also check if the native code methods that perform cryptographic
operations are actually adopted or customized from a third-party library. Information of
the library will thus be very helpful in understanding the cryptographic operations in use,
especially if the library is an open-source software. While a customization is performed
and code obfuscation may be applied, the core data structures and cryptographic methods
typically do not differ much.

Lastly, we apply static analysis of the Dalvik code by using the static taint tracking
analysis tools, such as FlowDroid. In this way, we can observe dataflow relationship
between two operations of interest. The recovered Java code derived by a Dalvik-to-Java
decompiler also provides useful information on how the Dalvik code component of a
target app works.

4. Experimental Results

We applied the dynamic and static analysis techniques elaborated in Section 3 to WeChat
and WhatsApp, and report the experimental results on a rooted device in this section.

4.1. WeChat Key Recovery

We analyzed WeChat version 6.3.22, whose APK was built on July 11, 2016. To trigger
the WeChat’s decryption process, we need to first log out any existing user session, and
then log in again.

WeChat customizes the SQLCipher code base [27] instead of simply using it. When
inspecting the smali code of WeChat’s Dalvik code, we could not find any reference to
the standard net.sqlcipher.database SQLCipher package [28]. Instead, we found
out a number of SQLite-related classes under the com.tencent.kingkong package.
One such class is SQLiteConnection, which is related to database file opening. We
thus hooked and monitored the SQLiteConnection.<init>(. . .) method, and extract
its passed string parameters. In this way, we were able to retrieve the decryption key.

Furthermore, the path of the accessed database file can also be extracted from the
SQLiteDatabaseConfiguration object that is passed as an argument to the hooked
method above. The accessed WeChat database files, which are identified as parame-
ter path below, and their respective decryption key, which are identified as parameter
mPassword, are recovered as follows:
SQLiteConnection.<init>:: path=/data/data/com.tencent.mm/MicroMsg/

b98a831a089cef3031385d56a0f51927/EnMicroMsg.db

SQLiteConnection.<init>:: mPassword=fe34ed7

SQLiteConnection.<init>:: path=/data/data/com.tencent.mm/MicroMsg/

b98a831a089cef3031385d56a0f51927/enFavorite.db

SQLiteConnection.<init>:: mPassword=fe34ed7

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis10

SQLiteConnection.<init>:: path=/data/data/com.tencent.mm/MicroMsg/

ee1da3ae2100e09165c2e52382cfe79f/EnResDown.db

SQLiteConnection.<init>:: mPassword=7a6cc74

SQLiteConnection.<init>:: path=/data/data/com.tencent.mm/MicroMsg/

b98a831a089cef3031385d56a0f51927/SnsMicroMsg.db

SQLiteConnection.<init>:: mPassword=<NULL>

SQLiteConnection.<init>:: path=/data/data/com.tencent.mm/MicroMsg/

b98a831a089cef3031385d56a0f51927/SnsMicroMsg.db

SQLiteConnection.<init>:: mPassword=<NULL>

SQLiteConnection.<init>:: path=/data/data/com.tencent.mm/MicroMsg/

b98a831a089cef3031385d56a0f51927/IndexMicroMsg.db

SQLiteConnection.<init>:: mPassword=<NULL>

SQLiteConnection.<init>:: path=/data/data/com.tencent.mm/MicroMsg/

b98a831a089cef3031385d56a0f51927/CommonOneMicroMsg.db

SQLiteConnection.<init>:: mPassword=<NULL>

We additionally hooked a few native methods of WeChat to obtain several cipher pa-
rameters used by WeChat [29]. While it is possible to hook the relevant Java methods in
order to obtain the cipher parameters, we found that we can obtain the parameters more
easily by hooking a native SQLCipher method that is adopted by WeChat. For this pur-
pose, we took advantage of the SQLCipher code base [27]. Although WeChat customizes
SQLCipher, it seems to apply little modification on the core SQLCipher data structure
and operations. We thus hooked the libkkdb.sqlcipher codec ctx set pass(...)

method, and inspected its accessed database filename, decryption key, and codex ctx

object. The data structure of the codex ctx object can be discovered by analyzing the
relevant SQLCipher source file of crypto impl.c.

We were able to retrieve all the parameters of SQLCipher database file decryption
by inspecting the following recovered parameter values on our monitoring device:
sqlcipher_codec_ctx_set_cipher :: cipher_name=aes-256-cbc, return code=0

sqlcipher_codec_ctx_set_kdf_iter :: kdf_iter=4000, return code=0

sqlcipher_codec_ctx_set_pass :: key=fe34ed7, return code=0

sqlcipher_codec_ctx_set_pass :: codec_ctx->page_sz=1024

sqlcipher_codec_ctx_set_pass :: filename=/data/data/com.tencent.mm/

MicroMsg/b98a831a089cef3031385d56a0f51927/EnMicroMsg.db

sqlcipher_codec_ctx_set_use_hmac :: use=0, return code=0

sqlcipher_codec_ctx_set_cipher :: cipher_name=aes-256-cbc, return code=0

sqlcipher_codec_ctx_set_kdf_iter :: kdf_iter=4000, return code=0

sqlcipher_codec_ctx_set_pass :: key=fe34ed7, return code=0

sqlcipher_codec_ctx_set_pass :: codec_ctx->page_sz=1024

sqlcipher_codec_ctx_set_pass :: filename=/data/data/com.tencent.mm/

MicroMsg/b98a831a089cef3031385d56a0f51927/enFavorite.db

sqlcipher_codec_ctx_set_use_hmac :: use=0, return code=0

sqlcipher_codec_ctx_set_cipher :: cipher_name=aes-256-cbc, return code=0

sqlcipher_codec_ctx_set_kdf_iter :: kdf_iter=4000, return code=0

sqlcipher_codec_ctx_set_pass :: key=7a6cc74, return code=0

sqlcipher_codec_ctx_set_pass :: codec_ctx->page_sz=1024

sqlcipher_codec_ctx_set_pass :: filename=/data/data/com.tencent.mm/

MicroMsg/ee1da3ae2100e09165c2e52382cfe79f/EnResDown.db

sqlcipher_codec_ctx_set_use_hmac :: use=0, return code=0

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis 11

From the shown results above, we can conclude that WeChat performs its cipher op-
erations using “aes-256-cbc” with a page size of 1,024 and the KDF iteration value [30]
of 4,000. No HMAC construction is used for the operations. We can also see that the
recovered keys confirm those that were obtained using the Dalvik-based method moni-
toring. We have validated the correctness of the recovered keys and parameter values by
running Linux’s sqlcipher command to open the encrypted database files and produce
the clear database files.

4.2. WhatsApp Key Recovery and Database File Analysis

We analyzed WhatsApp version 2.16.133, whose APK was built on June 18, 2016. Its
encrypted database uses .crypt12 extension, which is still being used as of October
2016. While discussions and decryption scripts for older crypt7 and crypt8 files are
publicly available, there are still no available details of how the more recent crypt files can
be decrypted. Similar to the decryption of the older WhatsApp database versions [11],
our goal is to discover both the key and the initialization vector (IV) of the decryption
operation.

In our analysis, we found out that string literals of WhatsApp code are obfuscated.
In smali code representation of WhatsApp Dalvik bytecode, a string literal declaration
operation looks like in the following (see also [31] for Dalvik bytecode’s instruction set):

const-string/jumbo v0, "i|6C\r|f0C[i|6\u001e\u001dc2".

We thus first performed string de-obfuscation on WhatsApp bytecode classes in order to
help us locate target methods related to cryptographic operations more effectively. Based
on our analysis of the Java source code recovered, we discovered that each string within
a class is obfuscated simply by XOR-ing it with a repeated 5-byte obfuscation string that
is generated for the class.

Using our string de-obfuscation script, we could pinpoint the com.whatsapp.
util.b class, which seems to perform encryption/decryption operations. The class con-
tains a number of private instance fields of javax.crypto.Cipher class type [32]. Us-
ing dynamic analysis, we discovered all decryption parameters by monitoring “static
Cipher getInstance(String)” and “void init(int, Key, AlgorithmParame-
terSpec)” methods [32]. The former reveals the employed “AES/GCM/NoPadding”
cipher transformation, while the latter shows the key and IV used. The values recovered
on our device are as follows, with the last 30 characters of the key shown as ‘*’:
file open :: path=/data/data/com.whatsapp/databases/msgstore.db, flags=0,

mode=0, fd=57

file open :: path=/data/data/com.whatsapp/files/key, flags=0, mode=0, fd=92

Ljavax/crypto/Cipher :: mode=1

Ljavax/crypto/Cipher :: transformation=AES/GCM/NoPadding

size of byte array is 32

Ljavax/crypto/Cipher :: key=A0D0EB3BE2A06495CD9FEDBC93EFDCEBF0************

size of byte array is 16

Ljavax/crypto/Cipher :: IV=E6BAC22AC9712FE5A7292E852A5C3092

Unlike WeChat, WhatsApp manages its encrypted database file without relying on
any third-party libraries, such as SQLCipher. Since its encrypted database file is meant
for user chat-log transfer, WhatsApp thus also embeds additional sensitive information

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis12

into the file in order to facilitate its decryption and subsequent transfer. Understanding
the structure and content of the database file is therefore important.

Our analysis on the .crypt12 database file found that WhatsApp puts a 67-byte
header before and 20-byte trailer after the database ciphertext (more information on this
header and trailer below). We have successfully validated the obtained key and IV by
running our decryption code on the header- and trailer-stripped database ciphertext of
.crypt12 file. The following code snippet shows how our decryption code employs the
recovered cipher parameters:
Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding")

SecretKeySpec keySpec = new SecretKeySpec(key, "AES")

GCMParameterSpec ivSpec = new GCMParameterSpec(128, IV)

cipher.init(Cipher.DECRYPT_MODE, keySpec, ivSpec)

compressedPlainBytes = cipher.doFinal(cipherBytes)

// Decompress the obtained compressedPlainBytes

decompresser = new Inflater(false)

decompresser.setInput(compressedPlainBytes)

clearDB = new FileOutputStream(clearDBFilename)

buffer = new byte[1024]

while(!decompresser.finished()){

count = decompresser.inflate(buffer)

clearDB.write(buffer, 0, count)

}

Lastly, we would like to understand the content of the encrypted database header
and trailer, and how the decryption key is formed based on the contained information
during a log transfer. WhatsApp does not store the decryption key within the header of its
crypt12 file. Instead, it needs to contact a WhatsApp server and retrieve the decryption
key by supplying several pieces of information extracted from the header and trailer.

Our conducted analysis found out the following pieces of information embedded
within the crypt12’s 67-byte header:

• cipher-header preamble (2 bytes): 0x0, 0x1;
• key version (1 byte): 0x2;
• server salt (32 bytes): the stored pseudo-random salt from WhatsApp server;
• Google account-name salt (16 bytes): the salt used to produce Google account-

name hash, which is to be sent to WhatsApp server (more on this below);
• IV (16 bytes): the initialization vector value.

Likewise, we found the following pieces of information within the 20-byte trailer,
which are used by WhatsApp app solely to ensure the integrity of the database file:

• MD5 hash value (16 bytes): the MD5 hash value of the encrypted database file;
• Phone no’s suffix (4 bytes): which is derived from the last few digits of the de-

vice’s phone number.

When a mobile user transfers his/her encrypted WhatsApp chat log into a new
device, the decryption key needs to be retrieved from WhatsApp server. WhatsApp
client app on the new device sends both the server salt and the Google account-
name hash to WhatsApp server. The former is extracted from the database file
header. The latter is derived by applying the SHA-256 hash function on the mo-

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis 13

bile user’s Google account name, which is obtainable by invoking the Android API
android.accounts.AccountManager.getAccountsByType("com.google") [25],
and the Google account-name salt from the file header.

Once WhatsApp app receives the decryption key at the log transfer process,
it will then store the key, and other necessary information, within a file named
/data/data/com.whatsapp/files/key. In the WhatsApp version that we ana-
lyzed, this key file is 158-byte long, and contiguously stores Java serialization data
header (27 bytes), cipher-header preamble (2 bytes), key version (1 byte), server salt
(32 bytes), Google account-name salt (16 bytes), Google account-name hash (32 bytes),
IV (16 bytes), and the retrieved decryption key (32 bytes). Subsequent cryptographic
operations on the encrypted database file simply utilize the locally stored key.

5. Key Generation for Remote Target Devices

WeChat and WhatsApp decryption keys are formed based on a few pieces of device-
specific information, such as the phone IMEI number, and/or values that are locally
stored on the device [12,11]. When we consider attack scenarios involving a non locally-
accessible target device, such as scenarios WC2, WA2 and WA3, we thus need to simulate
the target device’s key generation process. Knowing what methods to recover the key as
expounded in Section 4, unfortunately, is still insufficient. We additionally need to mod-
ify the chat-app behavior on our monitoring device by utilizing the information sent by
the planted trojan app or guessed information. This can be done by using the following
two techniques.

The first technique rewrites the target chat app. It replaces all Dalvik-level Android
API invocations that obtain the device-specific information with direct value assignment
operations. Apktool [7] can be used to generate the text-based smali code representation
of the chat apps, and to subsequently derive the APK file of the altered chat app.

The second technique utilizes the dynamic instrumentation feature of the DDI/ADBI
toolkits. It has a benefit over the first one in that it can intercept and instrument both
Java and native methods. This feature was previously employed by [18]. The work shows
how the behavior of target apps can be modified so that, instead of performing an in-app
billing transaction with Google Play, the instrumented code intercepts the transaction and
sends back a forged in-app payment confirmation.

In addition to app behavior modification, we need to copy all relevant local files
of the target device, which are assumed to be transferred by our trojan app, into our
monitoring device. Our monitoring techniques as explained in Section 4 will then be able
to reveal the decryption keys of WeChat and WhatsApp running on the target device.

5.1. WeChat Behavior Modification

A successful WeChat password generation of a remote device can be achieved by per-
forming the following two steps, which are previously also pointed out by [12]:

• Modify WeChat behavior by replacing the value returned by the Android API call
android.telephony.TelephonyManager.getDeviceId() with the IMEI
number of the target device.

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis14

• Copy the shared preference files within the folder /data/data/com.whats-
app/shared prefs/ with those from the target device.

Using this technique, we can then reveal the targeted decryption key. The technique,
in fact, will continue to work despite possible changes of the employed hash function
(i.e. MD5) in future WeChat versions, as long as the key-derivation process depends
upon only the IMEI number and locally stored files. This represents an advantage of our
employed dynamic analysis over the static analysis used by prior work [12].

5.2. WhatsApp Behavior Modification

For WhatsApp password generation of a non locally-acquired device, we need to perform
the following two steps:

• Copy the target device’s database file to the monitoring device’s SD card.
• Modify WhatsApp to return the Google account name of mobile user in the target

device. In this way, the altered app will retrieve the key from WhatsApp server
using the Google account-name hash of the target device as explained earlier.

Notice that the key request issued by the monitoring device to WhatsApp server will
succeed if the server does not store and verify the association between the used Google
account name and phone number of a mobile device. In our experiments, we decided not
to probe WhatsApp server and ascertain this provisioning. Instead, we opt to forewarn the
security community of this potential security weakness pertinent to a chat-app design that
allows for a log transfer using an encrypted database. We further discuss the applicability
and ethical considerations of WhatsApp password generation later in Section 6.3.

6. Discussions

6.1. Weakness Root Causes

Given the potential impact of our decryption-key recovery on the analyzed chat apps,
we conducted an analysis of why our technique is possible. The following are our key
observations on why our analysis technique can still attack widely-popular chat apps.

• The decryption-key construction is sometimes performed within the Dalvik code
of the chat apps. As Dalvik bytecode can be easily reverse engineered and ana-
lyzed, the key construction steps can thus be inspected easier.

• The formed key is passed as a parameter in clear among the app methods. As such,
dynamic monitoring can easily reveal the passed key and other accompanying
pieces of sensitive information in their clear final form.

• The inclusion or customization of third-party libraries, particularly those related
to database encryption/decryption, still largely maintains the key data structures
and main operational methods of the libraries. Inspection of the libraries, espe-
cially the open-source ones, will therefore make code analysis and dynamic mon-
itoring of the chat apps become significantly easier.

• The decryption-key formulation of the analyzed chat apps depends on determinis-
tic device-dependent information, such as IMEI number as in WeChat or Google
account name as in WhatsApp. An attack technique like ours can therefore simu-
late a key generation process of a remote target device as explained in Section 5.

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis 15

Additionally, for chat apps that allow for a log transfer to a different device like
WhatsApp, the following represent insecure or imprudent practices that can contribute
to a successful decryption of the encrypted database by an attacker:

• Lack of a record keeping and verification by the chat-app server on the association
between a mobile device’s phone number and user account information.

• Lack of privacy protection that prevents the reading of information stored within
the encrypted file’s header.

6.2. Recommended Counter Measures

The following are counter measures that can be adopted by chat-app developers to
strengthen their future app versions:

• The key-construction step can be done within the last native method perform-
ing/invoking the decryption operation. This way, dynamic analysis can thus in-
spect only the flow of individual pieces of information that finally constitute the
key into the native method.

• Inclusion or customization of a third-party library needs to substantially alter the
key data structures and main operational methods related to the decryption key.
Obfuscation techniques, particularly the layout and data obfuscation techniques,
can be very useful for this.

• Control-flow obfuscation can also be applied to the Dalvik code so that static
taint-tracking analysis would find it more difficult to inspect the flow of device-
specific information that is used for key construction.

• The Dalvik code may also spuriously flow the relevant sensitive device-specific
information in order to complicate the information-flow analysis of the chat apps.

• Chat-app developers may also explore the possibility of incorporating a random
value in formulating a decryption key. This measure will therefore hinder attacks
that simulate the key-generation process of a remote device, such as ours. There
exists, however, an issue of securely storing such a random value. If the value is
stored locally on a mobile device, its confidentiality thus needs to be protected.
It could be encrypted, for example, using the mobile user’s account password.

For a chat-app model that provisions a log transfer to a different device, and whose
remote server issues the decryption key upon request by a device, the following counter
measures can additionally be exercised:

• The chat-app server needs to keep track of the association between a mobile de-
vice’s phone number and user account information. The server returns the re-
quested key only if the two pieces of information supplied in a query match.

• The database file header can be encrypted using a user-chosen password. A chat-
log transfer will proceed correctly only if the user enters the correct password.

6.3. Ethical Considerations and Applicability of Our Attacks

We discuss below ethical considerations of our techniques and obtained results. We ad-
ditionally review the applicability conditions of our techniques, which also relates to the
security implications of the two analyzed chat apps.

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis16

We believe that our results sufficiently highlight potential security issues with the
design of current popular chat apps. We have not contacted the developers of WeChat
and WhatsApp to inform them of our findings for the following reasons. Techniques
to decrypt the current version of WeChat and older versions of WhatsApp are already
known [12,11]. Additionally, while our technique expounds a systematic and generalized
approach to recovering a target chat app’s key and decrypting its log, some attack pre-
requisites (as summarized below) do exist. Instead, we choose to share our results in this
publication so as to reach a wider audience within the security community. Furthermore,
we also suggest several counter measures that can be applied to prevent the attacks. This
is in line with a practice accepted by the security community to responsibly disseminate
potential security weaknesses, and suggest measures to address them.

When good security precautions are fully exercised by mobile users, our techniques
do not directly apply. In our experiments on WeChat reported in Section 4.1, we were
able to obtain its encrypted database files since the target device was rooted. Likewise,
WhatsApp users must physically safeguard the SD card of their devices. They also should
keep their Google account names secret, and make them difficult to guess. Lastly, the
key retrieval from WhatsApp server works only if it insecurely issues an inquired key
belonging to other number. Nevertheless, our attacks clearly highlight potential threats
to mobile user privacy that could work on rooted or exploitable devices in conjunction
with planted trojan apps, which are not uncommon.

Given the importance of our findings to chat-app security, we hope that our tech-
niques and results presented in this paper can help the security community become aware
of the privacy threats. We also hope that our paper can provide useful insights on how
the security community can move forward together in securing future chat apps.

7. Conclusion

We have presented our information-flow based approach to discovering the decryption
key of log database files from two highly popular chat apps, namely WhatsApp and
WeChat. We have shown that, despite the employed code-obfuscation technique, we can
discover the keys and obtain useful information on the key construction process. We
have additionally detailed the employed string de-obfuscation, encrypted database file
structure, and decryption-key formulation of the latest WhatsApp version. Moreover, we
have additionally elaborated how we can construct a chat-app version that can simulate
other devices’ key generation process. Given our generalized approach to discovering
and generating the decryption key, the proposed technique can still apply to different
chat-app versions as long as they still retain the same design and practice of employing
third-party cryptographic libraries and passing the key information into the libraries.
Lastly, we have provided an in-depth analysis of why our technique can work on widely-
popular chat apps, and listed measures that can be adopted by chat-app developers to
improve their future app versions and better protect the privacy of billions of their users.

Acknowledgment

This material is based on research work supported by the Singapore National Research
Foundation under NCR Award No. NRF2014NCR-NCR001-034.

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis 17

References

[1] WhatsApp Messenger, https://play.google.com/store/apps/details?id=com.whatsapp.
[2] WeChat, https://play.google.com/store/apps/details?id=com.tencent.mm.
[3] C. Mulliner, Android DDI: Dynamic Dalvik Instrumentation, 30th Chaos Communication Congress,

http://www.mulliner.org/android/feed/mulliner_ddi_30c3.pdf, 2013.
[4] C. Mulliner, ddi – Dynamic Dalvik Instrumentation Toolkit, https://github.com/crmulliner/

ddi.
[5] C. Mulliner, Binary Instrumentation on Android, SummerCon, 2012, http://www.mulliner.org/

android/feed/binaryinstrumentationandroid_mulliner_summercon12.pdf.
[6] C. Mulliner, adbi – The Android Dynamic Binary Instrumentation Toolkit, https://github.com/

crmulliner/adbi.
[7] Apktool, http://ibotpeaches.github.io/Apktool.
[8] jadx – Dex to Java decompiler, https://github.com/skylot/jadx.
[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel,

FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps, 35th Conference on Programming Language Design and Implementation (PLDI), 2014.

[10] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard, Information Flow Analysis of
Android Applications in DroidSafe, Network and Distributed System Security (NDSS), 2015.

[11] M. Ibrahim, How to Decrypt WhatsApp crypt7 Database, Digital Internals, http://www.

digitalinternals.com/security/decrypt-whatsapp-crypt7-database-messages/307,
May, 2014.

[12] F. M. Darus, How to decrypt WeChat EnMicroMsg.db database?, Forensic Focus, http://articles.
forensicfocus.com/2014/10/01/decrypt-wechat-enmicromsgdb-database, 2014.

[13] Wikipedia, WeChat, https://en.wikipedia.org/wiki/WeChat.
[14] SQLCipher, https://www.zetetic.net/sqlcipher.
[15] Wikipedia, WhatsApp, https://en.wikipedia.org/wiki/WhatsApp.
[16] WhatsApp Blog, One billion, https://blog.whatsapp.com/616/One-billion, February, 2016.
[17] WhatsApp, Frequently Asked Questions – How do I move my chat history over to my new Android

phone?, https://www.whatsapp.com/faq/en/android/20902622.
[18] C. Mulliner, W. Robertson, and E. Kirda, VirtualSwindle: An automated attack against in-app billing on

Android, 9th ACM Symposium on Information, Computer and Communications Security (ASIACCS
’14), 2014.

[19] IDA Pro, https://www.hex-rays.com/products/ida.
[20] C. Collberg, C. Thomborson, and D. Low, A taxonomy of obfuscating transformations, Technical Re-

port, 148, University of Auckland, Auckland, New Zealand, 1997.
[21] soot-infoflow-android wiki, https://github.com/secure-software-engineering/

soot-infoflow-android/wiki.
[22] E. Khalaj, R. Vanciu, and M. Abi-Antoun, Comparative evaluation of static analyses that find security

vulnerabilities, Technical Report, Wayne State University, Detroit, MI, 2014.
[23] L. Qiu, Z. Zhang, Z. Shen, and G. Sun, AppTrace: Dynamic trace on Android devices, International

Conference on Communications (ICC), 2015.
[24] J. Schutte, R. Fedler, and D. Titze, ConDroid: Targeted dynamic analysis of Android applications, 29th

International Conference on Advanced Information Networking and Applications (AINA), 2015.
[25] Android Open Source Project, AccountManager, http://developer.android.com/reference/

android/accounts/AccountManager.html.
[26] adbi – Issues, Too many memory mapping, https://github.com/crmulliner/adbi/issues/5.
[27] SQLCipher, sqlcipher/sqlcipher, https://github.com/sqlcipher/sqlcipher/tree/

910fd70a3fdeeaa937e0d26940f924dbefe7ba77/src.
[28] SQLCipher, SQLCipher for Android application integration, https://www.zetetic.net/

sqlcipher/sqlcipher-for-android.
[29] SQLCipher, SQLCipher API, https://www.zetetic.net/sqlcipher/sqlcipher-api.
[30] Wikipedia, PBKDF2, https://en.wikipedia.org/wiki/PBKDF2.
[31] Android Open Source Project, Dalvik bytecode, https://source.android.com/devices/tech/

dalvik/dalvik-bytecode.html.
[32] Oracle, javax.crypto – Class Cipher, https://docs.oracle.com/javase/7/docs/api/javax/

crypto/Cipher.html.

Z. Dai et al. / Chat-App Decryption Key Extraction Through Information Flow Analysis18

