
Metamodel Specialization for Diagram
Editor Building

Audris KALNINS1 and Janis BARZDINS
Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

Abstract. Domain-specific diagram editor building environments nowadays as a
rule involve some usage of metamodels. However normally the metamodel alone
is not sufficient to define an editor. Frequently the metamodel just defines the ab-
stract syntax of the domain, mappings or transformations are required to define the
editor functionality for diagram building. Another approach [8] is based on a fixed
type metamodel describing the possible diagram elements, there an editor defini-
tion consists of an instance of this metamodel to be executed by an engine. How-
ever there typically a number of functionality extensions in a transformation lan-
guage is required. The paper offers a new approach based on metamodel speciali-
zation – by just creating subclasses. First the permitted metamodel specialization
based on standard UML class diagrams and OCL is precisely defined. A universal
metamodel and an associated universal engine for the diagram editor domain is de-
scribed, then it is shown how a specific editor definition can be obtained by spe-
cializing this metamodel. Examples of a flowchart editor and UML class diagram
editor are given.

Keywords. Metamodeling, metamodel specialization, DSL tools, diagram editors

1. Introduction

Metamodeling typically is the basis for most domain-specific diagram editor definition
platforms nowadays, but the principles how metamodels are used vary significantly.
Many such tool building platforms are related to Eclipse EMF and GMF frameworks
[1,2]. They all are oriented towards the “classical” diagram building approach where at
first a domain metamodel describing the abstract syntax of the language must be de-
fined in EMF, only then the graphical concrete syntax (presentation metamodel) is de-
scribed as a GEF metamodel, with a mapping metamodel between the both added (in
GMF). There are some improvements of the basic Eclipse approach such as ObeoDe-
signer [3] where the presentation metamodel can be defined as a viewpoint of the do-
main metamodel, or Eugenia [4] where the presentation and mapping metamodels are
defined as annotations to the domain metamodel and then generated using a transfor-
mation language. Thus there the basic Eclipse pattern – start with the domain meta-
model is preserved. A completely different platform – Microsoft DSL [5] uses a similar
pattern by starting with a domain metamodel and then adding the presentation and
mapping metamodels, only metamodels are created in a “dialect” of UML. A complete-
ly domain specific metamodeling language GOPRR is used in the MetaEdit [6] plat-
form where the graphical syntax metamodel can be defined directly but with a limited

1 Corresponding Author, e-mail: audris.kalnins@lumii.lv

Databases and Information Systems IX
G. Arnicans et al. (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-714-6-87

87

functionality. A common feature to all these platforms and some similar ones is that for
each new DSL a new metamodel must be created in some metamodeling language.
The platform devoted most directly to graphical modeling language editor definition is
the platform developed by IMCS UL – TDA [7,8] (the platform initially was named
GrTP [9]). There a fixed Tool definition metamodel is proposed which defines type
classes for all DSL elements – GraphDiagram, Node, Edge, Compartment, Palette etc.,
in addition style classes for all these elements are also present there. Then a concrete
DSL and an editor for it is defined as an instance set of this metamodel. However the
complete metamodel for an editor contains also the runtime elements – the classes
GraphDiagram, Node, Edge etc., thus instances of completely different nature – Node,
NodeType and NodeStyle (and so on) coexist in a runtime model corresponding to this
metamodel. In addition, these instances of semantically different layers must be proper-
ly linked. The approach is quite usable for simple DSLs where the type instance set
defining the language can be created by an auxiliary tool – the Configurator [10], with-
out deep knowledge of the metamodel. However even for slightly more complicated
languages the mechanism of extension points related to events of relatively low ab-
straction level and associated custom transformations has to be used. To create such a
transformation (in a special Lua/lQuery language [11]) the developer has to have a
deep knowledge of the metamodel. The editor runtime is based on a Universal Inter-
preter – a type metamodel interpreter which interacts with the custom transformations
and the support engines for managing diagram layout and user dialogs (Presentation
Engine and Dialog Engine).

During the TDA development attempts have been made to use also alternative
styles of metamodel usage, closer to the topic of this paper – metamodel specialization.
One such attempt [8,12] was to use an extended UML stereotype mechanism and a
stereotype specialization. Another one [13] was the extension of UML class specializa-
tion by non-standard concepts borrowed from OWL. However none of these ideas are
based on a clean UML usage and none of them were completed and implemented.

This paper proposes a completely new approach to editor definition for Domain
Specific Modeling Languages (DSML) on the basis of their graphical syntax. The ap-
proach is based on a consistent use of metamodel specialization. In Section 2 the met-
amodel specialization based solely on standard UML class diagram elements and OCL
is precisely defined. It should be noted that though the concept of subclass is widely
used in metamodel building the whole metamodel specialization to a new more detailed
metamodel is a new idea in metamodeling. The only reference where the term “meta-
model specialization” has been explicitly used is [14] where the concept has been used
for DSML extension, but within a significantly different context. In addition, this idea
(without explicitly naming it) has been used in the OMG standard for Diagram Defini-
tion [15]. Section 3 introduces the concepts of Universal Metamodel (UMM) for the
graphical diagram domain and a Universal Engine (UE) related to this metamodel. The
concepts are explained on a very simple flowchart editor example. Section 4 describes
a complete UMM for DSML definition and the main functionality of UE providing a
realistic editor behavior. Section 5 gives a complete specialization of UMM for a realis-
tic flowchart editor. Section 6 presents some most interesting fragments of a class dia-
gram editor defined by a specialization, there the proposed approach for defining the
internal structure of texts in a diagram is illustrated as well. Both these examples con-
firm that DSML definition by specialization is the cleanest and most understandable
way. Finally, the basic principles of an implementation of the approach are given in

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building88

Section 7. This paper is an updated version of paper [16] presented at DB&IS’2016, the
figures 1 to 5 are from this paper.

2. Metamodel Specialization

Class specialization is a well-known concept in UML. In a sense, it is a cornerstone in
building understandable class diagrams. It is also a widely used approach in building
metamodels in MOF. However, there is a variation of specialization which can pro-
vide a completely new idea in building class models. It is the specialization of a whole
metamodel.

A widely used UML concept is an abstract class, which cannot have instances di-
rectly. To be more precise, here we need this concept in two contexts. The first one is
the standard usage of an abstract class in UML models, where it is being defined as a
union of instance sets of all its subclasses. This kind of usage of an abstract class will
appear here for technical purposes to pull up common properties for several subclasses.

The other kind of usage of abstract classes appears when we specialize the whole
metamodel. Classes of such generic (base) metamodel are also abstract in the sense that
they do not have direct instances in our approach. However, there is no need to define
their instance sets somehow – only their subclasses appearing in a metamodel speciali-
zation will be really used. The classes of the generic metamodel will be used to assign
an intuitive semantics to a set of classes and their properties, with more details appear-
ing only in a specialization.

Now let us give an example of a generic metamodel in Figure 1.

Figure 1. Example of a generic metamodel.

This very simple class diagram containing just two classes still gives some guidelines
of its intended meaning – it represents a simple kind of Process metamodel containing
a sequence of actions. Now let us create a specialization of this metamodel by creating
subclasses of classes in Figure 1. This specialization presents a simplest kind of Busi-
ness Trip process – see Figure 2.

Figure 2. Simple Process metamodel specialization – Business Trip.

The specialization represents a metamodel for Business Trip. Classes of the specializa-
tion are no more abstract – they can have instances, e.g., TripToBerlin, Reserve-
LufthansaFlight etc. The specialization diagram relies on UML redefines feature for
subclasses – inherited association ends having the same name as for the superclass are

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building 89

redefined automatically, but renamed ends use the explicit redefines modifier. Our intu-
itive semantics of the specialized metamodel completely complies with the semantics
assumed for abstract classes of the generic Process metamodel. We will call the generic
metamodel which is being specialized a Universal Metamodel (or UMM for short) –
see more details on this in the next section. Classes of a UMM will be shown with a
white background, but the specialized classes – with a colored one.

In order to make the metamodel examples more readable and compact we use a
custom notation for specialized classes and redefined associations here – we show only
the specialization and add the original class and role names from UMM in braces (and
in bold italic font) – see Figure 3 which presents the same specialization as in Figure 2.

Figure 3. Business Trip specialization in the alternative notation.

Now let us give a more formal definition of metamodel specialization. There may be as
many classes specialized from UMM classes as required. But there is a restriction that
only a precisely defined set of features enabled by UML redefines construct can be
applied to inherited from UMM class properties – attributes and association ends. The
permitted redefinition includes:

the definition of a default value of an attribute (but not redefining the attribute
type or multiplicity) syntactically the redefinition is ensured by using the
same attribute names in the subclass
for a redefined association end the multiplicity of the association may be rede-
fined (narrowed), explicit redefinition must be used when a different role
name is used for a subclass.

No new (non-redefined) attributes or associations can be introduced in the specializa-
tion. Default values of attributes are essential here since they determine that a newly
created instance of a specialized class will have just these values. A specialization of a
UMM class may also be an abstract one (with the standard UML semantics), if it has a
further specialization to non-abstract classes. But concrete classes cannot be specialized
further. Specialized classes may have OCL constraints attached.

The goal of these specialization restrictions is to permit only meaningful speciali-
zations where subclasses are true specializations of the corresponding UMM classes
with a similar, but more restricted meaning.

3. Universal Metamodel and Universal Engine

Now when the permitted metamodel specialization has been defined it is time to try to
formalize more deeply the intended meaning of a metamodel by adding some precisely
defined behavior to it. We will define this behavior by means of an executable engine
named the Universal Engine (UE) for the given UMM. By definition of this UE we
understand a specification how this UE will work on arbitrary specialization of the
UMM. In this sense there is only one unique UE for the given UMM.

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building90

We will explain the concept of UE on an example – a UMM in Figure 4 and one of
its specializations in Fig.5. We will explain the functionality of UE on just this special-
ization, but with the goal to understand how the UE will work on any specialization.
Since our main domain in this paper is diagram editor definition, Figure 4 represents a
UMM for a family of very simple editors which are capable of creating just one dia-
gram consisting of nodes and edges, with the structure specified in a specialization.

Figure 4. Universal metamodel for simplified diagram editors.

Nodes can have any shape and fill color, edges have color and end shapes. But no
text element creation for nodes and edges is present in this simplified version. However
one vital element for defining an editor functionality is present here – the Palette to-
gether with its elements for creating nodes and edges. Any diagram editor is to be run
by a user, but User is not explicitly present in the UMM. Instead, we say that the user
can click any palette element – palette node or edge. In response a node or edge in-
stance of the specified kind will be created by UE. Certainly, for a new node the user
after the click has to select an empty place in the diagram area, but for a new edge – its
start and end nodes. Actually this is all we have to say here on the generic behavior of
UE in this simple case, in addition we assume that the editor always starts with an emp-
ty diagram with its Palette shown. The details of real behavior of UE for creating a dia-
gram of a specific kind are defined in a specialization of UMM. E.g., only there it is
visible what elements will be shown in the palette and what diagram Node specializa-
tion will be created by clicking on a PaletteNode specialization. Figure 5 presents one
such UMM specialization – a very simple flowchart editor, the custom notation for
specialization introduced in Section 2 is used there.

The GraphDiagram class is specialized to a concrete diagram kind – Sim-
pleFlowchart. The specialization contains four specialized node kinds – Action, Start,
End and Decision as subclasses of the UMM Node class and just one Edge specializa-
tion – Flow. Accordingly, the Palette is specialized to FlowchartPalette containing four
PaletteNode subclasses (one for each node kind) and one PaletteEdge subclass. Default
values are assigned to all inherited attributes in subclasses, for node and edge sub-
classes these are the default style attributes to be used by UE when a node or edge in-
stance is created (note the different shapes for all node kinds). For palette elements
different icons and texts are specified accordingly. All UMM associations are redefined
as well – using the automatic redefinition where association end names are the same for
the superclass and subclass and explicit redefinition otherwise.

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building 91

Figure 5. UMM specialization defining a simple flowchart editor.

To reduce the number of associations in the specialization an abstract subclass is
used – the FlowEnd class. It groups together the concrete subclasses Action, End and
Decision, which have a common containment association in the SimpleFlowchart dia-
gram and a common association to incoming Flow instances. The fact of specializing
the Node class in UMM is also shown in the FlowEnd class, the subclasses inherit it.
Note that the specialization within the specialized metamodel is shown via the tradi-
tional UML notation. The fourth Node subclass – the Start couldn’t be included in the
group since it has no inFlow association to the Flow, in addition the containment mul-
tiplicity is different. No grouping is used for the outgoing flow specification since the
multiplicities are too different, instead the simplest UML {xor} constraint is used to
specify that a Flow can start from only one Node subclass instance. Note that each
PaletteNode subclass has a specialized association to the corresponding Node subclass
– PaletteAction to Action and so on, thus enabling the appropriate node type creation
upon a palette element click.

This relatively simple specialization contains no explicit OCL constraints. Howev-
er multiplicities and {xor} constraints act as required according to the UML standard.
Thus only one Flow can exit an Action or Start node, and no more than two flows a
Decision node, only one Start node can be created per flowchart and so on. If the user
tries to violate these constraints UE shows a fixed error message – “Action not permit-
ted”. Thus a relatively rich diagram editor definition can be obtained by a simple gener-
ic UE specification and an appropriate UMM specialization. Though the behavior of
UE was explained just on the specialization for the simple flowchart, it should be clear
how it would behave on any correct specialization of UMM in Figure 4. We note here

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building92

that many purely technical functions (e.g., diagram layout management) to be per-
formed by UE do not depend on the given specialization and can be performed by
components of UE based solely on the UMM – see more in Section 7.

4. Application of Metamodel Specialization to Diagram Editor Definition

The previous section gave a simple introduction into basic concepts of UMM and UE
for graphical diagram editor definition. Our goal in this paper is to define a platform
for realistic diagram editor definition by means of metamodel specialization. The capa-
bilities of such editors should be similar to our previous editor definition platform TDA
[7,8]. The UMM will provide a general schema for any such editor – be it an editor for
flowcharts, for UML class diagrams, for UML activity diagrams etc. The generic be-
havior of all such editors will be defined by the Universal Engine (UE) operating on
UMM. But making the editor behaving just as a Flowchart editor should be made by
defining an appropriate specialization of the UMM – then the UE will act as a true
Flowchart editor. The UMM will provide a vision of such a diagram editor – on what
concepts it is operating (see the UMM in Figure 6). We will consider only diagram
editors for pure graphical modelling purposes – without the need to generate some code
from the diagram, to run an interpreter on it etc.

The UMM for our diagram editor domain provides a generic data schema on which
the behavior of UE and thus any specialized editor is based. But the behavior dynamics
involves also the editor user whose actions actually determine the result. The previous
section introduced one element for interaction with the user – the diagram Palette, but
there are more.

The possible user actions will not be explicitly captured as UMM classes but they
will be tied up to most of UMM classes. The semantics of UE behavior will be defined
just in terms of these actions – what happens if the user clicks a palette element, dou-
ble-clicks an existing diagram node, enters a compartment value as a text input etc. But
there is a strict requirement that all results of a user interaction must be stored as in-
stances of appropriate UMM classes – more precisely, of their specializations.

Now let us explain our vision of such diagram editors and their potential behavior
on the basis of the UMM in Figure 6. Typically any real diagram editor, including
those defined via TDA, contains the concept of Project – a set of related diagrams hav-
ing a common usage. Therefore we also include Project class in our UMM. The con-
tents of a project has to be somehow visualized – frequently via a tree. However since
we want to restrict our visualization facilities, a Project diagram is introduced instead.
It contains Diagram seeds – nodes from which the corresponding diagram can be ac-
cessed via double-click. Thus a project diagram is a normal graph diagram. The con-
cepts of Graph diagram, Node, Edge were introduced already in Section 3, only some
more attributes are added to these UMM classes. Certainly, we will not present com-
pletely all used in practice diagram style attributes, but only the main ones. The main
new concept in this UMM is the Compartment – an element in a node or at an edge
containing some text. The value attribute of a compartment shows the string really dis-
played in a diagram. But there are a lot of other attributes specifying the structure of
texts, the means for entering them by a user, a way and style of displaying them and so
on, in addition these attributes differ for texts in nodes and at lines, therefore we have
NodeCompartment and EdgeCompartment classes. A compartment text may have a
substructure – e.g., a class attribute text in UML consists of its name, type, default val-

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building 93

ue, modifiers etc., these elements are separated by constant prefixes or suffixes in the
common string value, the order of concatenation may be defined by the subCompNo
attribute if required. But during the value creation by the user they typically are pro-
cessed as separate compartments. This structuring in the UMM is supported by the
parentCompart – subCompart association, permitting each part to be processed sepa-
rately as a subcompartment.

Figure 6. UMM for real diagram editors.

Further, the inputContr attribute determines the input control type, which is offered to
the user for entering the compartment or subcompartment value. Certainly, the sup-
ported types of input controls depend on capabilities of UE, but the minimum list in-
cludes simple text input, checkbox for entering Boolean values and listbox or com-
bobox for offering to the user a list of values to select from (in case of combobox a
direct value input is also permitted). For both these controls there must be a possibility
to define the appropriate value list, therefore the itemList attribute of type Set(String) is
added. The default value of this attribute must be set in the specialized compartment

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building94

class (if listbox or combobox is selected for the compartment input), this value may be
a constant set or an OCL expression deriving the set from other diagram elements al-
ready created. One more nontrivial input control is multiline input containing rows with
the same properties (such as the whole attribute list for a class), there a special Com-
partmentRow subclass permits to process each line separately and add a new line (a
line may be a structured compartment as well).

The whole input process of a compartment is organized by UE in a fixed way, the
specialization may configure only a compartment structure, the input control used for a
compartment/subcompartment entry and provide the required values. In addition, a
standard UML constraint (an OCL expression based on elements of the specialization
and returning a Boolean value) may be added to the specialized compartment class to
check the entered compartment value after the user has completed the input of this
compartment. Some examples for these rather complicated specialization features are
demonstrated in Section 6 on class diagram editor fragments.

A significant difference of this UMM from the UMM in Section 3 is that there are
no more palette-related classes in UMM. Even the simplest specialization for an editor
in Figure 5 had to contain two classes for each node (or edge) kind – for node itself and
the related palette element, which can make the specializations quite large and cluttered
for real diagrams. The only essential information for palette elements is the icon and
caption attributes. Now these attributes (palIcon and palCaption) are added to Node and
Edge classes. These attributes must have a default value for each non-abstract Node or
Edge subclass in a specialization. Then the slightly extended UE can automatically
generate a correct palette for each diagram kind in the specialization.

We conclude this section by a rather informal description of UE related to this
UMM. Upon start the UE permits the user to create a new diagram editor project of the
kind defined by the current specialization (a flowchart project, a class diagram project
etc.) or open an existing project of this kind. After that the project diagram (either emp-
ty or already filled) with its (generated) palette is shown. The user can add a new dia-
gram of a supported kind via creating its seed from the palette, or open an existing dia-
gram – by double-clicking on the seed. The diagram is opened together with its palette,
and then new diagram elements can be added in the manner described in the previous
section. But a new possibility is to enter compartment values which are defined in the
specialization – the compartment editor (a dialog form) is opened after a new node or
edge is created. The compartment editor can be opened also for existing nodes or edges
by a double-click. Besides this specialization-related UE behavior, UE offers some
default behavior to the user – to save a project, to modify the default style of a node or
edge, to modify the layout etc.

5. The Real Flowchart Specialization Example

In this section the new possibilities of UMM and UE are demonstrated on a more real-
istic flowchart editor example – see Figure 7. The Project class from UMM is special-
ized to FlowchartProject with just one FlowchartProjectDiagram attached to it. This
diagram contains named FlowchSeed nodes from which the corresponding Flowchart
diagram instance can be opened. There are no more palette-related classes, instead all
Node and Edge specialization classes contain the palette-related attributes. This means
that UE can generate all relevant palette elements automatically. Thus the palette for
FlowchartProjectDiagram contains just the element for FlowchSeed node creation.

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building 95

When the user clicks this element, a new seed node is created. In order to have a user-
defined name for a seed (and the related flowchart as well), the FlowchNameCompart
class (specialized from the NodeCompartment) is associated to FlowchSeed . Only the
caption and inputContr attributes with their default values appear in the compartment
specialization – other attribute values are not required for this simple case.

The generated palette for the Flowchart diagram itself contains four node elements
(same as the explicit palette in Figure 5) and two edge elements (for both kinds of
Flows). The Flowchart node definitions in this specialization are also similar to those in
Section 3, only a name can be created for an Action and a condition text for a Decision
– both use simple TextInput fields for value input.

Figure 7. Realistic flowchart editor specialization.

But here two edge subclasses are defined – the Flow as in Section 3 and the Condition-
alFlow which can exit only a Decision node (no more than two instances). A condition-
al flow has a text attached near to its start – typically Y or N but any other text can be
used as well. Therefore in the specialization the class CondValueCompart (a subclass
of EdgeCompartment) is used. A different input control type – Combobox is used there,
and for this control also the default value for itemList attribute must be defined – here

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building96

it is a constant set of strings – Set {“Y”,”N”}. The position attribute specifies that the
entered text has to be positioned near the start of the edge.

Note also the abstract class FlowchEdge in the specialization, with the concrete
subclasses Flow and ConditionalFlow, which holds the common attributes and associa-
tions for both Flow and ConditionalFlow..

Thus this example shows that using only basic UML class diagram constructs such
as multiplicity a UMM specialization can define relatively complicated editor behavior.
In order to obtain a more compact specialization, it is assumed that some more com-
partment style attributes (in addition to those shown in Figure 6) have their default val-
ues set already in UMM, e.g., fontStyle is set to the value normal.

6. Fragments of Class Diagram Example

In this section some basic fragments containing new features for a specialization of
the same UMM in Figure 6 defining a class diagram editor will be given. The function-
ality of the editor is approximately that used for creating class diagrams (metamodels)
used in this paper. The whole specialization can be defined in 3 class diagrams each to
be shown in an A4 page in a readable way. The supported node types are Class and
Enumeration, but edge types – Association and Generalization. In addition, the UML
package mechanism is included, but in a slightly non-standard way – using Package
diagrams. The main new elements in this specialization are the use of compartment
rows, subcompartments and OCL expressions for default values and constraints. Figure
8 presents a fragment of this specialization showing the Class node and some of its
compartments: Class name compartment, IsAbstract compartment and Attribute com-
partment. The IsAbstractCompartment enables the user to enter the Boolean value
specifying whether the given class is abstract or not; this is done via a checkbox control
(the value is stored in the model as a string “true” or “false”). This value is not visible
directly in the class node – therefore the attribute isVisible is set to false (according to
the UML standard). Instead, the value is displayed by setting the appropriate style for
the class name compartment (italic if the class is abstract). To specify this setting, the
value of fontStyle attribute of ClassNameCompartment is set by an OCL expression:
fontStyle : FontStyle = if self.class.isAbstract
.value.toBoolean() then italic else bold endif

(the expression is not shown in Figure 8 to reduce the box size). The Attribute compart-
ment is to be created by the user via a specific control – MultiLineInput. This control is
specially adjusted to creating texts consisting of logically independent lines, such as
attributes or operations in a Class node. Therefore the UE provides an independent en-
try of each line using the CompartmentRow class in UMM which is specialized here to
AttributeRow. Further, the line can have a complicated substructure: each attribute has
a name, type, default value, multiplicity etc. This is supported in UE by the subcom-
partment concept (see Section 4). Here we have the AttributeName, AttributeType,
DefaultValue etc. subcompartments (only the first two are shown in Figure 8). To spec-
ify how the values are to be concatenated to a common string, prefixes or suffixes are
used – see the prefix “:” for the type. Each subcompartment can be entered using a spe-
cific control – the type is entered using a combobox offering the most typical values
(primitive types and all defined enumerations in the model). Therefore the itemList
attribute of this compartment is specified by the OCL expression:

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building 97

itemList : String[*] = set{“Integer”,”Boolean”, “String”,
”Real”} -> union(Enumeration.allInstances().name.value ->
asSet())

The allInstances OCL construct iterates over the whole project, thus all Enumeration
instances are collected and their name values included in the list. A similar but more
complicated expression can be defined to offer all already existing class names when a
class name is to be entered (in order to create occurrences of a class in several dia-
grams). Similar expressions preparing a typical value list can be defined for other sub-
compartments as well, e.g., for type-dependent default value prompting.

Figure 8. Fragment of class diagram specialization – class attributes.

Finally, we show an example of OCL class constraint to be used for checking the en-
tered compartment value correctness – the class AttributeName has a constraint speci-
fying that attribute names must be unique for a class:
{self.attribute.multiRowCompart.attribute.nameSubComp.
value -> forAll(val | val<>self.value)}

Such constraints have to be specified directly for the corresponding compartment class,
then UE knows that the constraint has to be evaluated right after the user has exited the
corresponding input control.

To conclude, the use of OCL permits to obtain at least the same functionality of a
class diagram editor as can be defined using custom transformations at extension points
in TDA and close to many commercial UML editors.

7. Implementation Principles

The planned implementation of metamodel specialization based DSML editor platform
really consists of two parts – the Base UE (including DSML project management,
Presentation engine for diagram drawing and layout management, Dialog engine for
current form building and user input processing) and the UMM Specialization engine.
All components of the Base UE can in fact work in terms of the UMM. However, real
instances in a running diagram editor are solely for classes and associations in the giv-

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building98

en specialization. These instances are created and managed in a repository by the Spe-
cialization engine (SE), which is the sole component using and navigating the special-
ized metamodel. For example, when a new Node subclass instance is being created, the
SE sets the default values of the redefined attributes and collects all specialized com-
partments for this Node subclass. Now this information has to be passed to the dialog
engine (DE) for displaying the input form. However, as stated before, the DE should
work in terms of UMM. To achieve this, a temporary instance repository (of limited
size) according to the original UMM can be used. Since all specialization classes are
true subclasses of UMM classes, at instance level such interpretation can be easily per-
formed by SE. Similarly, at instance level all links corresponding to redefined associa-
tions can be interpreted as links for associations in UMM, at instance level no name
conflicts appear. Certainly, here UMM has to be extended by a reference attribute to
the specialized element, but this attribute is used only by SE. Thus DE can get the in-
formation for creating the input form according to UMM and store the obtained user
input also in this UMM-based repository. The next steps are performed by SE, which
checks the data and then invokes the Presentation engine (PE) for drawing the node in
the current diagram. PE again does this in the context of UMM, since specific attribute
values (e.g., for style) have been set by SE. Here it is clear that no more than instances
in the current diagram must be maintained by SE in this temporary UMM-based reposi-
tory. In addition, there must be a component for interpreting the OCL expressions (for
default values and constraints, referencing the specialized model). If Eclipse EMF is
used as a model repository there is a freely available OCL interpreter [18]. For other
repositories the solution used in TDA can be applied – use the Lua/lQuery [11] instead
of OCL, this language has sufficient expressive power and is implemented within TDA
for several repositories. The components of Base UE (DE, PE) in fact are quite similar
to those existing in the TDA implementation, therefore they could be reused. Thus the
effort for implementing the proposed approach could be much lower than that used for
TDA, the only new component would be SE.

8. Conclusions

The analyzed DSML examples show that the proposed approach for DSML editor def-
inition based on metamodel specialization has a number of advantages and is usable in
practice. The specialized metamodels which use only basic UML class diagram fea-
tures and OCL for more complicated situations are natural formalizations of the graph-
ical syntax of the DSML to be defined. Thus such metamodels are sufficiently easy to
create and read. To a great degree this fact shows up when compared to the correspond-
ing DSML definitions in the existing TDA platform. For very simple DSMLs such as
the simple flowchart where the type instances in TDA can be created using the Config-
urator without any extension points the efforts are comparable. But for Class diagram
editor a significant use of extension points and transformations is required in TDA,
with a large effort required to create these transformations due to the complicated
runtime metamodel in TDA. Thus the complete DSML definition there is in fact invisi-
ble, the type metamodel instances provide only a graphical skeleton of class diagram
definition. At the same time the definition using metamodel specialization describes the
supported functionality in a very explicit way. Creation of required OCL constraints is
also quite straightforward since the specialization directly defines also the runtime met-
amodel to be referenced in constraints. If more features are to be added, the specializa-

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building 99

tion extension by new specialized classes is also very straightforward. Most probably,

if TDA would be created now, the metamodel specialization approach would be used.

In addition, the metamodel specialization can be used for direct diagram syntax defini-

tion (in a simpler way than the current DD standard [15]), see more in [17].

Acknowledgements

This work is supported by the Latvian National research program SOPHIS under grant

agreement Nr.10-4/VPP-4/11

References

[1] Eclipse. http://www.eclipse.org. Accessed August 2016.

[2] Graphical Modeling Framework (GMF, Eclipse Modeling subproject), http://www.eclipse. org/gmf/.

Accessed August 2016.

[3] Obeo Designer: Domain Specific Modeling for Software Architects, http://www.obeodesigner.com/.

Accessed August 2016.

[4] EuGENia Live, http://eugenialive.herokuapp.com/. Accessed August 2016.

[5] S. Cook, G. Jones, S. Kent and A.C. Wills, Domain-Specific Development with Visual Studio DSL
Tools, Addison-Wesley, Boston, 2007.

[6] S. Kelly, J.P. Tolvanen, Domain-Specific Modeling: Enabling Full Code Generation, Wiley, Hoboken,

2008.

[7] J. Barzdins, E. Rencis and S. Kozlovics, The Transformation-Driven Architecture In Proceedings of
DSM'08 Workshop of OOPSLA 2008, Nashville, Tennessee, USA, pages 60-63. 2008.

[8] A. Sprogis, Configuration Language for Domain Specific Tools and its Implementation, PhD thesis (in

Latvian), University of Latvia, Riga, 2013.

[9] J. Barzdins et al., GrTP: Transformation Based Graphical Tool Building Platform, Proceedings of

MDDAUI‘07 Workshop of MODELS 2007, Nashville, Tennessee, USA, CEUR Workshop Proceedings,

http://ceur-ws.org, 297 (2007), 4 pp.

[10] A. Sprogis. The Configurator in DSL Tool Building, Computer Science and Information Technologies,
Scientific Papers, University of Latvia, 756 (2010), 173–192.

[11] R. Liepins. lQuery: A Model Query and Transformation Library, Computer Science and Information
Technologies, Scientific Papers, University of Latvia, 770 (2011), 27-46.

[12] A. Sprogis and J. Barzdins, Specification, Configuration and Implementation of DSL Tool. In Frontiers

of AI and Applications 249, Databases and Information Systems VII, IOS Press, pages 330-343, 2013.

[13] E. Rencis, J. Barzdins and S. Kozlovics, Towards open graphical tool-building framework. In Proceed-
ings of BIR 2011, RTU Press, Riga, pages80-87, 2011.

[14] S. Pierre, et al., A Family-Based Framework for i-DSML Adaptation. In Proceedings of 10th European
Conference ECMFA 2014, LNCS 8569, Springer, pages 164-179, 2014.

[15] Diagram Definition (DD), Object Management Group, version 1.1 – formal/2015-06-01, 2015.

[16] A. Kalnins and J. Barzdins, Metamodel Specialization for DSL Tool Building, In Databases and Infor-

mation Systems, DB&IS 2016 Proceedings, CCIS 615, Springer, pages 68-82, 2016.

[17] A. Kalnins and J. Barzdins, Metamodel Specialization for Graphical Modeling Language Support,

accepted for MODELS 2016.

[18] Eclipse OCL, https://projects.eclipse.org/projects/modeling.mdt.ocl. Accessed August 2016.

A. Kalnins and J. Barzdins / Metamodel Specialization for Diagram Editor Building100

	1. Introduction
	2. Metamodel Specialization
	3. Universal Metamodel and Universal Engine
	4. Application of Metamodel Specialization to Diagram Editor Definition
	5. The Real Flowchart Specialization Example
	6. Fragments of Class Diagram Example
	7. Implementation Principles
	8. Conclusions
	Acknowledgements
	References

