
Automatic Distribution of Local Testers
for Testing Distributed Systems

Jüri VAIN 1, Evelin HALLING, Gert KANTER, Aivo ANIER and Deepak PAL
Department of Computer Science, Tallinn University of Technology, Estonia

http://cs.ttu.ee/

Abstract. Low-latency systems where reaction time is primary success factor and
design consideration, are serious challenge to existing integration and system level
testing techniques. Modern cyber physical systems have grown to the scale of
global geographic distribution and latency requirements are measured in nanosec-
onds. While existing tools support prescribed input profiles they seldom provide
enough reactivity to run the tests with simultaneous and interdependent input pro-
files at remote front ends. Additional complexities emerge due to severe timing
constraints the tests have to meet when test navigation decision time ranges near the
message propagation time. Sufficient timing conditions for remote online testing
have been proposed in remote Δ-testing method recently. We extend the Δ-testing
by deploying testers on fully distributed test architecture. This approach reduces the
test reaction time by almost a factor of two. We validate the method on a distributed
oil pumping SCADA system case study.

Keywords. model-based testing, distributed systems, low-latency systems

1. Introduction

Modern large scale cyber-physical systems have grown to the size of global geo-
graphic distribution and their latency requirements are measured in microseconds or even
nanoseconds. Such applications where latency is one of the primary design consider-
ations are called low-latency systems and where it is of critical importance – to time
critical systems. A typical example of distributed time critical system is smart energy
grid (SEG) where delayed control signals can cause overloads and blackouts of whole
regions. Thus, the proper timing is the main measure of success in SEG and often the
hardest design concern.

Since large SEG-s systems are mostly distributed systems (by distributed systems
we mean the systems where computations are performed on multiple networked com-
puters that communicate and coordinate their actions by passing messages), their latency
dynamics is influenced by many technical and non-technical factors. Just to name a few,
energy consumption profile look up time (few milliseconds) may depend on the load
profile, messaging middleware and the networking stacks of operating systems. Simi-
larly, due to cache miss, the caching time can grow from microseconds to about hundred

1Corresponding Author: Jüri Vain; Department of Computer Science, Tallinn University of Technology,
Akadeemia tee 15A, 19086 Tallinn, Estonia; E-mail: juri.vain@ttu.ee

Databases and Information Systems IX
G. Arnicans et al. (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-714-6-297

297



milliseconds [1]. Reaching sufficient feature coverage by integration testing of such sys-
tems in the presence of numerous latency factors and their interdependences, is out of the
reach of manual testing. Obvious implication is that scalable integration and system level
testing presumes complex tools and techniques to assure the quality of the test results
[2]. To achieve the confidence and trustability, the test suites need to be either correct by
construction or verified against the test goals after they are generated. The need for au-
tomated test generation and their correctness assurance have given raise to model based
testing (MBT) and the development of several commercial and academic MBT tools. In
this paper, we interpret MBT in the standard way, i.e. as conformance testing that com-
pares the expected behaviors described by the system requirements model with the ob-
served behaviors of an actual implementation (implementation under test). For detailed
overview of MBT and related tools we refer to [3] and [4].

2. Related Work

Testing distributed systems has been one of the MBT challenges since the beginning of
the 90s. An attempt to standardize the test interfaces for distributed testing was made
in ISO OSI Conformance Testing Methodology [5]. A general distributed test architec-
ture, containing distributed interfaces, has been presented in Open Distributed Processing
(ODP) Basic Reference Model (BRM), which is a generalized version of ISO distributed
test architecture. First MBT approaches represented the test configurations as systems
that can be modeled by finite state machines (FSM) with several distributed interfaces,
called ports. An example of abstract distributed test architecture is proposed in [6]. This
architecture suggests the Implementation Under Test (IUT) contains several ports that
can be located physically far from each other. The testers are located in these nodes
that have direct access to ports. There are also two strongly limiting assumptions: (i) the
testers cannot communicate and synchronize with one another unless they communicate
through the IUT, and (ii) no global clock is available. Under these assumptions a test
generation method was developed in [6] for generating synchronizable test sequences
of multi-port finite state machines. However, it was shown in [7] that no method that is
based on the concept of synchronizable test sequences can ensure full fault coverage for
all the testers. The reason is that for certain testers, given a FSM transition, there may
not exist any synchronizable test sequence that can force the machine to traverse this
transition. This is generally known as controllability and observability problem of dis-
tributed testers. These problems occur if a tester cannot determine either when to apply a
particular input to IUT, or whether a particular output from IUT is generated in response
to a specific input [8]. For instance, the controllability problem occurs when the tester at
a port pi is expected to send an input to IUT after IUT has responded to an input from the
tester at some other port p j, without sending an output to pi. The tester at pi is unable to
decide whether IUT has received that input and so cannot know when to send its input.
Similarly, the observability problem occurs when the tester at some port pi is expected
to receive an output from IUT in response to a given input at some port other than pi and
is unable to determine when to start and stop waiting. Such observability problems can
introduce fault masking.

In [8], it is proposed to construct test sequences that cause no controllability and
observability problems during their application. Unfortunately, offline generation of

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems298



test sequences is not always applicable. For instance, when the model of IUT is non-
deterministic it needs instead of fixed test sequences online testers capable of handling
non-deterministic behavior of IUT. But even this is not always possible. An alternative is
to construct testers that includes external coordination messages. However, that creates
communication overhead and possibly the delay introduced by the sending of each mes-
sage. Finding an acceptable amount of coordination messages depends on timing con-
straints and finally amounts to finding a tradeoff between the controllability, observabil-
ity and the cost of sending external coordination messages.

The need for retaining the timing and latency properties of testers became crucial na-
tively when time critical cyber physical and low-latency systems were tested. Pioneering
theoretical results have been published on test timing correctness in [9] where a remote
abstract tester was proposed for testing distributed systems in a centralized manner. It
was proven that if IUT ports are remotely observable and controllable then 2Δ-condition
is sufficient for satisfying timing correctness of the test. Here, Δ denotes an upper bound
of message propagation delay between tester and IUT ports. However, this condition
makes remote testing problematic when 2Δ is close to timing constraints of IUT, e.g. the
length of time interval when the test input has to reach port has definite effect on IUT.
If the actual time interval between receiving an IUT output and sending subsequent test
stimulus is longer than 2Δ the input may not reach the input port in time and the test goal
cannot be reached.

In this paper we focus on distributed online testing of low latency and time-critical
systems with distributed testers that can exchange synchronization messages that meet Δ-
delay condition. In contrast to the centralized testing approach, our approach reduces the
tester reaction time from 2Δ to Δ. The validation of proposed approach is demonstrated
on a distributed oil pumping SCADA system case study.

3. Preliminaries

3.1. Model-Based Testing

In model-based testing, the formal requirements model of implementation under test
describes how the system under test is required to behave. The model, built in a suitable
machine interpretable formalism, can be used to automatically generate the test cases,
either offline or online, and can also be used as the oracle that checks if the IUT behavior
conforms to this model. Offline test generation means that tests are generated before test
execution and executed when needed. In the case of online test generation the model is
executed in lock step with the IUT. The communication between the model and the IUT
involves controllable inputs of the IUT and observable outputs of the IUT.

There are multiple different formalisms used for building conformance testing mod-
els. Our choice is Uppaal timed automata (TA) [10] because the formalism is designed to
express the timed behavior of state transition systems and there exists a family of tools
that support model construction, verification and online model-based testing [11].

3.2. Uppaal Timed Automata

Uppaal Timed Automata [10] (UTA) used for the specification of the requirements are
defined as a closed network of extended timed automata that are called processes. The

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems 299



processes are combined into a single system by the parallel composition known from the
process algebra CCS. An example of a system of two automata comprised of 3 locations
and 2 transitions each is given in Figure 1.

Figure 1. A parallel composition of Uppaal timed automata

The nodes of the automata are called locations and the directed edges transitions.
The state of an automaton consists of its current location and assignments to all variables,
including clocks. The initial locations of the automata are graphically denoted by an
additional circle inside the location.

Synchronous communication between the processes is by hand-shake synchroniza-
tion links that are called channels. A channel relates a pair of edges labeled with symbols
for input actions denoted by e.g. chA? and chB? in Figure 1, and output actions denoted
by chA! and chB!, where chA and chB are the names of the channels.

In Figure 1, there is an example of a model that represents a synchronous remote
procedure call. The calling process Process i and the callee process Process j both in-
clude three locations and two synchronized transitions. Process i, initially at location
Start i, initiates the call by executing the send action chA! that is synchronized with the
receive action chA? in Process j, that is initially at location Start j. The location Opera-
tion denotes the situation where Process j computes the output y. Once done, the control
is returned to Process i by the action chB!

The duration of the execution of the result is specified by the interval [lb,ub] where
the upper bound ub is given by the invariant cl<=ub, and the lower bound lb by the
guard condition cl>=lb of the transition Operation → Stop j. The assignment cl=0 on
the transition Start j → Operation ensures that the clock cl is reset when the control
reaches the location Operation. The global variables x and y model the input and output
arguments of the remote procedure call, and the computation itself is modelled by the
function f(x) defined in the declarations section of the Uppaal model.

The inputs and outputs of the test system are modeled using channels labeled in a
special way described later. Asynchronous communication between processes is mod-
eled using global variables accessible to all processes.

Formally the Uppaal timed automata are defined as follows. Let Σ denote a finite
alphabet of actions a,b, . . . and C a finite set of real-valued variables p,q,r, denoting
clocks. A guard is a conjunctive formula of atomic constraints of the form p ∼ n for
p∈C,∼∈ {≥,≤,=,>,<} and n∈N

+. We use G(C) to denote the set of clock guards. A
timed automaton A is a tuple 〈N, l0,E, I〉 where N is a finite set of locations (graphically
denoted by nodes), l0 ∈ N is the initial location, E ∈ N ×G(C)×Σ× 2C ×N is the set
of edges (an edge is denoted by an arc) and I : N → G(C) assigns invariants to locations
(here we restrict to constraints in the form: p ≤ n or p < n,n ∈ N

+. Without the loss
of generality we assume that guard conditions are in conjunctive form with conjuncts
including besides clock constraints also constraints on integer variables. Similarly to

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems300



clock conditions, the propositions on integer variables k are of the form k ∼ n for n ∈ N,
and ∼∈ {≤,≥,=,>,<}. For the formal definition of Uppaal TA full semantics we refer
the reader to [12] and [10].

4. Remote Testing

The test purpose most often used in MBT is conformance testing. In conformance testing
the IUT is considered as a black-box, i.e., only the inputs and outputs of the system are
externally controllable and observable respectively. The aim of black-box conformance
testing according to [13] is to check if the behavior observable on system interface con-
forms to a given requirements specification. During testing, a tester executes selected
test cases on an IUT and emits a test verdict (pass, fail, inconclusive). The verdict shows
correctness in the sense of input-output conformance relation (IOCO) between IUT and
the specification. The behavior of a IOCO-correct implementation should respect after
some observations following restrictions:

(i) the outputs produced by IUT should be the same as allowed in the specification;
(ii) if a quiescent state (a situation where the system can not evolve without an

input from the environment [14]) is reached in IUT, this should also be the case in the
specification;

(iii) any time an input is possible in the specification, this should also be the case in
the implementation.

The set of tests that forms a test suite is structured into test cases, each addressing
some specific test purpose. In MBT, the test cases are generated from formal models that
specify the expected behavior of the IUT and from the coverage criteria that constrain
the behavior defined in IUT model with only those addressed by the test purpose. In our
approach Uppaal Timed Automata (UTA) [10] are used as a formalism for modeling IUT
behavior. This choice is motivated by the need to test the IUT with timing constraints so
that the impact of propagation delays between the IUT and the tester can be taken into
account when the test cases are generated and executed against remote real-time systems.

Another important aspect that needs to be addressed in remote testing is functional
non-determinism of the IUT behavior with respect to test inputs. For nondeterministic
systems only online testing (generating test stimuli on-the-fly) is applicable in contrast
to that of deterministic systems where test sequences can be generated offline. Second
source of non-determinism in remote testing of real-time systems is communication la-
tency between the tester and the IUT that may lead to interleaving of inputs and out-
puts. This affects the generation of inputs for the IUT and the observation of outputs that
may trigger a wrong test verdict. This problem has been described in [15], where the
Δ-testability criterion (Δ describes the communication latency) has been proposed. The
Δ-testability criterion ensures that wrong input/output interleaving never occurs.

4.1. Centralized Remote Testing

Let us first consider a centralized tester design case. In the case of centralized tester, all
test inputs are generated by a single monolithic tester. This means that the centralized
tester will generate an input for the IUT, waits for the result and continues with the next
set of inputs and outputs until the test scenario has been finished. Thus, the tester has to

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems 301



wait for the duration it takes the signal to be transmitted from the tester to the IUT’s ports
and the responses back from ports to the tester. In the case of IUT being distributed in a
way that signal propagation time is non-negligible, this can lead into a situation where
the tester is unable to generate the necessary input for the IUT in time due to message
propagation latency. These timing issues can render testing an IUT impossible if the IUT
is a distributed real-time system.

Figure 2. Remote tester communication architecture

To be more concrete, let us consider the remote testing architecture depicted in Fig-
ure 2 and the corresponding model depicted in Figure 3 and 4. In this case the IUT has 3
ports (p1, p2, p3) in geographically different places to interact within the system, inputs
i1, i2 and i3 at ports p1, p2 and p3 respectively and outputs o1 at port p1, o2 at port p2, o3
at port p3.

Figure 3. IUT model

We model a multi-ports timed automata by splitting the edges with multiple com-
munication actions to a sequence of edges each labeled with exactly one action and con-
nected via committed locations, so that all ports of such group are updated at the same
time. In Figure 4 the labels on the edges represent the transitions and the transition tuple
(L0, L1, i1! /(o1?, o2?)) is represented by sequence of edges each labeled with exactly one
action and connected via committed locations. For example the sequence of edges from
location L0 to L1 with labels i1!, o1? and o2? represents the multiple communication
actions where the input i1! at port p1 in location L0 being able to trigger a transition that
leads to the output o1? and o2? at ports p1, p2 respectively and the location becoming L1.

Using such splitting of edges with committed locations, we model a three port au-
tomata shown in Figure 4 where the tester sends an input i1 to the port p1 at Geographic
Place 1 and receives a response or outputs o1 and o2 from IUT at Geographic Place

1 and Geographic Place 2 respectively. After receiving the result, the tester is in lo-
cation L1, it gets both i3 on port p3 and i2 on port p2. Then, either it follows the intended

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems302



Figure 4. Remote Tester model

path sending i3 before i2, or it sends i2 before i3. If tester decides to send i3 before i2 it
receives an output o1 at port p1 and returns to location L1. The transition is a self loop
if its start and end locations are the same. If tester decides to send i2, the IUT responds
with an output o3 at port p3. Now, the tester is in location L2, it gets both i1 on port p1
and i2 on port p2. Based on guard condition and previously triggered inputs and received
outputs the next input is sent to IUT and tester continues with the next set of inputs and
outputs until the test scenario has been finished.

The described IUT is a real-time distributed system, which means that it has strict
timing constraints for messaging between ports. More specifically, after sending the first
input i1 to port p1 at Geographic Place 1 and after receiving the response o1 and o2
at Geographic Place 1 and Geographic Place 2 respectively, the tester needs to
decide and send the next input i2 to port p2 at Geographic Place 2 or input i3 to port
p3 at Geographic Place 3 in Δ time. But, due to the fact that the tester is not at the
same geographical place as the distributed IUT, it is unable to send the next input in time
as the time it takes to receive the response and send the next input amounts to 2Δ, which
is double the time allotted for the next input signal to arrive.

Consequently, the centralized remote testing approach is not suitable for testing a
real-time distributed system if the system has strict timing constraints with non negligi-
ble signal propagation times between system ports. To overcome this problem, the cen-
tralized tester is decomposed and distributed as described in the next section.

5. Distributed Testing

The shortcoming of the centralized remote testing approach is mitigated with extend-
ing the Δ-testing idea by decomposing the monolithic remote tester into multiple local
testers. These local testers are directly attached to the ports of the IUT. Thus, instead of
bidirectional communication between a remote tester and the IUT, only unidirectional
synchronization between the local testers is required. The local testers are generated in
two steps: at first, a centralized remote tester is generated by applying the reactive plan-
ning online-tester synthesis method of [16], and second, a set of synchronizing local
testers is derived by decomposing the monolithic tester into a set of location specific
tester instances. Each tester instance needs to know now only the occurrence of i/o events

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems 303



Figure 5. Distributed Local testers communication architecture

at other ports which determine its behavior. Possible reactions of the local tester to these
events are already specified in its model and do not need further feedback to the event
sender. The decomposing preserves the correctness of testers so that if the monolithic re-
mote tester meets 2Δ requirement then the distributed testers meet (one) Δ-controllability
requirement.

We apply the algorithm described in 5.1 to transform the centralized testing architec-
ture depicted in Figure 2 into a set of communicating distributed local testers, the archi-
tecture of which is shown in Figure 5. After applying the algorithm, the message prop-
agation time between the local tester and the IUT port has been eliminated because the
tester is attached directly to the port. This means that the overall testing response time is
also reduced, because previously the messages had to be transmitted over a channel with
latency bidirectionally. The resulting architecture mitigates the timing issue by replacing
the bidirectional communication with a unidirectional broadcast of the IUT output sig-
nals between the distributed local testers. The generated local tester models are shown in
Figure 6, Figure 7, Figure 8 and Figure 9.

Figure 6. Local tester at Geographic Place 1 Figure 7. Local tester at Geographic Place 2

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems304



Figure 8. Local tester at Geographic Place 3

Figure 9. Output Event Synchronizer

5.1. Tester Distribution Algorithm

Let MMT denote a monolithic remote tester model generated by applying the reactive
planning online-tester synthesis method [16]. Loc(IUT ) denotes a set of geographically
different port locations of IUT . The number of locations can be from 1 to n, where n ∈N

i.e. Loc(IUT ) = {ln|n ∈ N}. Let Pln denotes a set of ports accessible in the location ln.

1. For each l, l ∈ Loc(IUT ) we copy MMT to Ml to be transformed to a location
specific local tester instance.

2. For each Ml we go through all the edges in Ml . If the edge has a synchronizing
channel and the channel does not belong to the the set of ports Pln , we do the
following:

• if the channel’s action is send, we replace it with the co-action receive.
• if the channel’s action is receive, we do nothing.

3. For each Ml we add one more automaton that duplicates the input signals from
Ml to IUT , attached to the set of ports Pln and broadcasts the duplicates to other
local testers to synchronize the test runs at their local ports. Similarly the IUT
local output event observations are broadcast to other testers for synchronization
purposes like automaton in Figure 9.

6. Correctness of Tester Distribution Algorithm

To verify the correctness of distributed tester generation algorithm we check the bi-
simulation equivalence relation between the model of monolithic centralized tester and
that of distributed tester. For that the models are composed by parallel compositions so
that one has a role of words generator on i/o alphabet and other the role of words acceptor
machine. If the i/o language acceptance is established in one direction then the roles of
models are reversed. Since the i/o alphabets of remote tester and distributed tester differ
due to synchronizing messages of distributed tester the behaviors are compared based on
the i/o alphabet observable on IUT ports only. Second adjustment of models to be made

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems 305



for bi-simulation analysis is the reduction of message propagation delays to uniform ba-
sis either on Δ or 2Δ in both models. Assume (due to closed world assumption used in
MBT):

• the centralized remote tester model: Mremote = TAIUT ‖ TAr−T ST

• the distributed tester model: Mdistrib = TAIUT ‖ �i TAd−T ST
i i = [1, n], n - number

of ports locations.
• to unify the timed words TW (Mremote) and TW (Mdistrib) the communication de-

lay between IUT and Tester is assumed.

Definition (correctness of tester distribution mapping): The mapping Mremote Algorithm
−−−−−→
Mdistrib is correct if TAr−T ST and �i TAd−T ST

i are observation bisimilar, i.e. if TAr−T ST and
�i TAd−T ST

i are respectively generating and accepting automata on common i/o alphabet
Σi∪Σo then all timed words TW (TAr−T ST ) are recognizable by �i TAd−T ST

i and all timed
words TW(�i TAd−T ST

i ) are recognizable by TAr−T ST .
Here, alphabet Σi ∪ Σo includes i/o symbols used at IUT-TESTER interfaces of

Mremote and Mdistrib.
Correctness verification of the distribution mapping:
Step 1: (Constructing generating-accepting automata synchronous composition):

• label each output action of TAr−T ST with output symbol a! and its co-action in �i
TAd−T ST

i with input symbol a?;
• define parallel composition TAr−T ST ‖ �i TAd−T ST

i with synchronous i/o actions.

Step 2: (Bisimilarity proof by model checking): TAr−T ST and �i TAd−T ST
i are observation

bisimilar if following holds: Mremote � not deadlock ∧ Mdistrib � not deadlock ⇒
TAr−T ST ‖ � j TAd−T ST

j � not deadlock j = [1, n], n - number of local testers , i.e. the
composition of bisimilar testers must be non-blocking if the testers composed with IUT
model separately are non-blocking.

7. Case Study

7.1. Use Case

The benefit of using the proposed method is demonstrated in the use case of an EMS
(Energy Management System) which is integrated into the SCADA (Supervisory Con-
trol And Data Acquisition) system of an industrial consumer. An EMS is essentially a
load balancing system. The target of the balancing system is the load on power supplies
called feeders to an industrial consumer. These industrial power consumers have multiple
feeders to power the devices required for their operations (e.g., pumps and pipeline heat-
ing systems). The motivation for balancing the power consumption between the feeders
stems from the fact that the power companies can enforce fines on the industrial con-
sumers if the power consumption exceeds certain thresholds due to safety considerations
and possible damage to the equipment. Therefore, the consumer is motivated to share
the power consuming devices among the feeders minimize or eliminate such energy con-
sumption spikes completely.

Let us consider a use case in which an oil terminal has two feeders and multiple
power consuming devices (consumers). The number of consumers can range from some

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems306



to many. In our use case we have 32 consumers, but in other cases it can be more. These
consumers are both pumps and pipeline heating systems. The pumps have a high surge
power consumption when starting up which must be taken into consideration when de-
signing an EMS. The EMS monitors the current consumption by polling the consumers
via a communication system (e.g., PROFIBUS, CAN bus or Industrial Ethernet). The
PROFIBUS communication system is standardized in EN 50170 international standard.

Because the oil terminal stores oil it is considered an explosion hazard area
and therefore, a special communication system that is certified for explosive areas -
PROFIBUS PA (Process Automation) is used. PROFIBUS PA meets the ‘Intrinsically
Safe’ (IS) and bus-powered requirements defined by IEC 61158-2. The maximum trans-
fer rate of PROFIBUS PA is 31.25 kbit/s which can limit the system response speed if
there are many devices connected to the PROFIBUS bus and each device has significant
input and output data load.

The EMS is able to switch devices from being supplied from either feeder. Ideally,
the power consumption is shared equally among both feeders at all times. This means
that the EMS monitors the devices and switches devices over to other feeders if the power
consumption is unbalanced among the feeders. In normal operation, the feeder loads are
kept sufficiently low to accommodate new devices starting up in a way that the surge
consumption will not exceed the threshold power of the feeders.

The EMS polls every power consumer periodically and updates the total consump-
tion. Based on this total consumption, the EMS will command the power distribution de-
vices to switch around from first feeder to the second in case the load on the first feeder
is higher than on the second and vice versa.

In our use case we simulate the power consumption of the devices as the input to the
IUT. The tester monitors the output (the EMS feeder load values). The test purpose is to
verify that neither of the power loads exceed the specified threshold. Exceeding this limit
might cause equipment damage and the power company can impose fines upon violating
this limit.

Figure 10. Case Study Test Architecture

The test architecture is depicted in Figure 10. In the right side of the figure, we can
see the EMS and consumers as the implementation under test. The test model and test
runner is on the left side. The test is executed via DTRON, which transmits the inputs and
outputs via Spread. In the IUT and tester models we are going to introduce, the signals
prefixed with i or o are synchronizing signals sent through Spread message serialization
service . The signals without the aforementioned prefixes are internal signals which are
not published to the Spread network. The input to the IUT is provided by the remote tester
model is depicted in Figure 13 which simulates the device power consumption levels and
creates challenging scenarios for the EMS. The EMS queries the consumers which are

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems 307



modeled in Figure 12 and balances the load between the feeders based on the total power
consumption monitoring data . The EMS model is shown in Figure 11 which displays
the querying loop. The querying is performed in a loop due to the semi-duplex nature
of communication in PROFIBUS networks. The EMS also takes the maximum power
limit into account as the total power consumption must not exceed this level. This can be
seen in the remote tester model shown in Figure 13. Remote tester nondeterministically
selects a consumer and sends the level of energy consumption for that particular device to
the input port of the IUT. Then the remote tester waits s time units before requesting the
current feeder energy levels. On the model, it is indicated as i get line balance!. After
receiving the current values the tester will check whether they are within allowed range.
If the values exceed the limit the test verdict is fail. Otherwise the tester will continue
with the next iteration.

Figure 11. Energy Management System model Figure 12. Consumer model

Figure 13. Remote Tester model

The communication delay between receiving the signal from EMS with the current
feeder energy levels and sending input to the IUT is 2Δ. According to the specification the
system must stabilize the load between feeders in stabilization time limit s after receiving
the input. If Δ is very close to system stabilization time limit s indicated in the remote
tester model in Figure 13 the remote tester fails to send the signal in time to the IUT.

For this reason, we introduce the distributed tester Figure 14 where each local com-
ponent of the tester is closely coupled to the IUT input ports. As shown in chapter 5 this
approach reduces the delay by up to Δ. This guarantees that after receiving the output
from EMS we can send new input to IUT within less than s time units.

7.2. Test Execution Environment DTRON

Uppaal TRON [11] is a testing tool, based on Uppaal engine, suited for black-box con-
formance testing of timed systems [11]. DTRON [13] extends this enabling distributed

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems308



Figure 14. Parametrized local tester template for distributed testing

execution. It incorporates Network Time Protocol (NTP) based real-time clock correc-
tions to give a global timestamp (t1) to events at IUT adapter(s). These events are then
globally serialized and published for other subscribers with a Spread toolkit [18]. Sub-
scribers can be other IUT adapters, as well as DTRON instances. NTP based global time
aware subscribers also timestamp the event received message (t2) to compute and possi-
bly compensate for the overhead time it takes for messaging overhead Δ = t2 − t1.

Δ is essential in real-timed executions to compensate for messaging delays that may
lead to false-negative non-conformance results for the test-runs. Messaging overhead
caused by elongated event timings may also result in messages published in on order,
but revived by subscribers in another. Δ can then also be used to re-order the messages
in a given buffered time-window tΔ. Due to the online monitoring capability DTRON
supports the functionality of evaluating upper and lower bounds of message propagation
delays by allowing the inspection of message timings. While having such a realistic net-
work latency monitoring capability in DTRON our test correctness verification workflow
takes into account theses delays. For verification of the deployed test configuration we
make corresponding time parameter adjustments in the IUT model.

8. Conclusion

We extend the Δ-testing method proposed originally for single remote tester by intro-
ducing multiple local testers on fully distributed test architecture where testers are at-
tached directly to the ports of IUT. Thus, instead of bidirectional communication be-
tween a remote tester and IUT only unidirectional synchronization between the local
testers is needed in given solution. A constructive algorithm is proposed to generate lo-
cal testers in two steps: at first, a monolithic remote tester is generated by applying the
reactive planning online-tester synthesis method of [16], and second, a set of synchro-
nizing local testers is derived by partitioning the monolithic tester into a set of location
specific tester instances. The partitioning preserves the correctness of testers so that if
the monolithic remote tester meets 2Δ requirement then the distributed testers meet (one)
Δ-controllability requirement. Second contribution of the paper is that distributed testers
are generated as Uppal Timed Automata. According to our best knowledge the real time
distributed testers have not been constructed automatically in this formalism yet. As for

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems 309



method implementation, the local testers are executed and communicating via distributed
test execution environment DTRON [13]. We demonstrate that the distributed deploy-
ment architecture supported by DTRON and its message serialization service allows re-
ducing the total test reaction time by almost a factor of two. The validation of proposed
approach is demonstrated on an Energy Management System case study.

References

[1] A. Brook, Evolution and Practice: Low-latency Distributed Applications in Finance. Queue - Distributed
Computing, ACM, New York (2015), vol. 13, no. 4, pp. 40-53.

[2] G. Hackenberg, M. Irlbeck, V. Koutsoumpas, and D. Bytschkow, Applying formal software engineering
techniques to smart grids. In Software Engineering for the Smart Grid (SE4SG), 2012 International
Workshop, IEEE (2012), pp. 50-56.

[3] M. Utting, A. Pretschner, and B. Legeard, A taxonomy of Model-based Testing. Software Testing, Veri-
fication & Reliability, John Wiley and Sons Ltd., Chichester, UK (2012), vol. 22, iss. 5, pp. 297-312.

[4] J. Zander, I. Schieferdecker, P. J. Mosterman (eds), Model-Based Testing for Embedded Systems. CRC
Press (2011).

[5] ISO. Information Technology, Open Systems Interconnection, Conformance Testing Methodology and
Framework - Parts 1-5. International Standard IS-9646. ISO, Geneve (1991).

[6] G. Luo, R. Dssouli, G. v. Bochmann, P. Venkataram, A. Ghedamsi, Test generation with respect to
distributed interfaces. Computer Standards & Interfaces, Elsevier (1994), vol. 16, iss. 2, pp.119-132.

[7] B. Sarikaya, G. v. Bochmann, Synchronization and specification issues in protocol testing. In: IEEE
Trans. Commun., IEEE Press, New York (1984), pp. 389-395.

[8] R. M. Hierons, M. G. Merayo, M. Núñez, Implementation relations and test generation for systems with
distributed interfaces. Springer-Verlag (2012), Distributed Computing, vol. 25, no. 1, pp. 35-62.

[9] A. David, K. G. Larsen, M. Mikuionis, O. L. Nguena Timo, A. Rollet, Remote Testing of Timed Spec-
ifications. In: Proceedings of the 25th IFIP International Conference on Testing Software and Systems
(ICTSS 2013), Springer, Heidelberg (2013), pp. 65-81.

[10] J. Bengtsson, W. Yi, Timed Automata: Semantics, Algorithms and Tools. In: Desel, J., Reisig, W.,
Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets: Advances in Petri Nets. LNCS, Springer,
Heidelberg (2004), vol. 3098, pp. 87–124.

[11] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, A. Skou, Testing Real-Time Systems
Using UPPAAL. In: Hierons, R. M., Bowen, J. P., Harman, M. (eds.) Formal Methods and Testing, An
Outcome of the FORTEST Network, Revised Selected Papers. LNCS, Springer, Heidelberg (2008), vol.
4949, pp. 77-117.

[12] G. Behrmann, A. David, K. G. Larsen, A Tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.)
Formal Methods for the Design of Real-Time Systems. LNCS, Springer, Heidelberg (2004), vol. 3185,
pp. 200-236.

[13] DTRON - Extension of TRON for distributed testing, http://www.cs.ttu.ee/dtron.
[14] J. Tretmans: Test generation with inputs, outputs and repetitive quiescence. Software - Concepts and

Tools, Springer-Verlag (1996), vol. 17, no. 3, pp. 103-120.
[15] R. Segala, Quiescence, fairness, testing, and the notion of implementation. In: Best, E. (eds.) 4th Intre-

national Conference on Concurrency Theory (CONCUR’93). LNCS, Springer, Heidelberg (1993), vol.
715, pp. 324-338.

[16] J. Vain, M. Kääramees, M. Markvardt: Online testing of nondeterministic systems with reactive planning
tester. In: Petre, L., Sere, K., Troubitsyna, E. (eds.) Dependability and Computer Engineering: Concepts
for Software-Intensive Systems, IGI Global, Hershey (2012), pp. 113-150.

[17] A. Anier, J. Vain, Model based Continual Planning and Control for Assistive Robots. In: Proceedings of
the International Conference on Health Informatics, SciTePress, Setúbal (2012), pp. 382-385.

[18] The Spread Toolkit, http://spread.org/.

J. Vain et al. / Automatic Distribution of Local Testers for Testing Distributed Systems310


