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Abstract. The algorithms for mining of frequent itemsets appeared in the early 
1990s. This problem has an important practical application, so there have appeared 
a lot of new methods of finding frequent itemsets. The number of existing 
algorithms complicates choosing the optimal algorithm for a certain task and 
dataset. Twelve most widely used algorithms for mining of frequent itemsets are 
analyzed and compared in this article. The authors discuss the capabilities of each 
algorithm and the features of classes of algorithms. The results of empirical 
research demonstrate different behavior of classes of algorithms according to 
certain characteristics of datasets.  
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1. Introduction 

The association rule mining task is to discover a set of attributes shared among a large 
number of objects in a given database. Consider, for example, the order database of a 
restaurant, where the objects represent guests and the attributes represent guests' orders. 
An example could be that "80% of people who order fish also order white wine". There 
are many other potential application areas for association rule technology, which 
include customer segmentation, catalog design, and so on. 

The use of association rules for data analysis was first proposed in 1993 by R. 
Agrawal [1] who used them to analyze what is now referred to as market basket data. 
The idea behind association rules can be expressed as follows: 

Let  be a set of items, and  a database of transactions, where each transaction 
has a unique identifier and contains a set of items. A set of items is also called an 
itemset. The support of an itemset , denoted by σ( ), is the number of transaction in 
which it occurs as a subset. An itemset  is frequent if its support is more than a user-
defined minimum support value (MinSupport). Moreover, the value of support can be 
interpreted at absolute or relative format, it doesn't matter. 

The association rule is an expression , where  and  are non-overlapping 
itemsets. The support of rule is given as σ( ), and the confidence as σ( )/σ(A), 
(i.e., the conditional probability that a transaction contains , given that it contains ). 
The rule is confident if its confidence is more than a user-defined minimum confidence 
(MinConf). 

The data mining task is to generate all association rules in the database, which 
have a support greater than minimum support, i.e., the rules are frequent. The rules 
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must also have confidence greater than minimum confidence, i.e. the rules are 
confident. The task can be broken into two steps [14]: 

� Find all frequent itemsets. Given  items, there can be potentially  frequent 
itemsets. Efficient methods are needed to traverse this exponential itemset 
search space to enumerate all the frequent itemsets. This frequent itemset 
discovery is the main focus of this paper. 

� Generate confident rules. This step is relatively straightforward; rules of the 
form , where are generated for all frequent itemsets , provided 
the rules have at least minimum confidence. 

We have already stated that finding frequently occurring datasets is an important 
subtask that helps answer a lot of questions. Since the variety of approaches is wide, 
practical applications require a reliable method of selecting proper algorithm to fit the 
task at hand. We look at the most widely used algorithms and some of the state-of-the-
art approaches, namely:Apriori [2] 1994, Apriori Hybrid [3] 1994, FP-Growth[10] 
2000, Eclat [14] 2000, dEclat [15] 2003,  Relim[4] 2005, LCMFreq v.2/v.3[12,13]  
2004-2005, H-mine[11] 2007, PPV[6] 2010, PrePost[7] 2012, FIN [8] 2014, PrePost+ 
[9] 2015. It is now our task to determine which of the algorithms above perform better 
than the others and should thus be chosen for optimal performance. This paper is a 
revised and extended version of [5]. 

2. Selection Criteria 

Let us consider some of the possible criteria of optimality that we may use. 

1. Asymptotics. In the theory of algorithms, this parameter is considered important, but 
it is completely devoid of objectivity in our case. The matter is that all algorithms 
use heuristics that allows reducing the search area. Their efficiency directly depends 
on the characteristics of particular data, its density and evenness of its distribution. 
In such cases, it is the worst case that is looked at, and the number of operations is 
determined on its basis, but such a situation occurs only while we are dealing with 
artificial and specially selected data that is not likely to be encountered in real life 
tasks. We will not use this criterion for comparing the algorithms. 

2. Simplicity of realization. This criterion is undoubtedly quite subjective. The history 
of the IT industry offers telling examples of how this criterion was used as a basis 
for managerial decisions. In the 1990s, numerous attempts were made to pay 
remuneration to software engineers based on the complexity of their work. All such 
attempts, including those that involved counting the number of lines of code and 
measuring the time it took to write them, proved useless and unsuccessful. In an 
industry like the IT one, simplicity of realization cannot be a valid criterion because 
everything depends not only on a programming task itself, but also on a developer’s 
programming background and implementation skills. In one of the reviewed works 
[4], however, the author uses simplicity of realization as one of the selection criteria 
for the purpose of his study. We consider this criterion to be intuitively clear, but we 
will not take it into consideration in comparing the algorithms. 

3. Volume of memory used. This is a telling criterion. If measured in real experiments 
with the same data set, the volume of memory used can provide a reliable basis for 
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choosing the most effective algorithm for a particular case. It is important to note 
that, for the reasons described above, we will use an empiric evaluation rather than 
an asymptotic one. Thus, the volume of memory used will not be used as a criterion 
for evaluating the algorithms in our work. 

4. Execution time. Since we have real life applications in mind, the empirically 
measured execution time of an algorithm will always be a criterion of utmost 
importance to us. It is this parameter that we will look at, first of all, while 
comparing the twelve most common algorithms. 

3. Comparative Analysis of Algorithms 

As was noted earlier, identifying frequently occurring itemsets is key to searching for 
association rules. Algorithms have to deal with large bases of initial data, which 
complicates analysis. It is, therefore, important how the incoming data stream is stored. 
All most widely used algorithms switch from attributes to symbols or sequences of 
symbols of a fixed length, thus limiting the task of storing initial data sets to storing a 
glossary of transactions. Therefore, the data structure chosen in this or that case is an 
important element of an algorithm. 

The bulk of research devoted to discovering association rules focuses on two 
categories of algorithms [11]: 

� "candidate-generation-and-test" 

� "pattern-growth method" 
A characteristic example of the first category of algorithms is Apriori (R. Agrawal, 

1994 [2]). This category also includes all the subsequent variations of this algorithm 
based on the anti-monotony principle (the support of a set of items does not exceed the 
support of any of its subsets) [1]. Such algorithms generate itemsets of length  
based on the previous itemsets having length . Even though the anti-monotony 
property principle allows us to disregard quite a few variants, such algorithms are not 
efficient computationally if initial data is extensive (the number of itemsets or the 
length of sets). 

A good example of the second category of algorithms is called FP-Growth (J. Han, 
2000 [10]). Algorithms of this type perform in a recursive manner by breaking down a 
data set into several parts and looking for local results that are subsequently combined 
into an overall result. The algorithms of this type generate fewer candidates than the 
algorithms described above, which allows to save a considerable amount of memory. 
However, the productivity of such algorithms largely depends on the homogeneity of 
initial data. 

The comparative analysis of the most widely used algorithms for finding frequent 
itemsets was based on studies published at different times. All the experiments 
described in those studies were run on well-known data sets in this subject area, such 
as: Pumsb, Mushroom, Connect, Chess and Accidents (FIMI repository – 
http://fimi.ua.ac.be). The Pumsb data set contains census data, while the Mushroom 
data set consists of characteristics of mushroom species, Connect и Chess are sources 
of data on progress in the corresponding games. The Accidents data contains 
information about traffic and accidents. 
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In order to obtain an overall view of the compared algorithms, we introduced 
binary directed relationships between the algorithms to reflect improvement of 
productivity and decreasing of memory used (based only on the experiments described 
in the articles mentioned above). According to the authors of the articles, each pair of 
algorithms was compared under identical conditions pertaining to the hardware 
characteristics, data, the language of realization, etc. Based on the relationships 
introduced between the algorithms, we made a chart of execution time (Figure 1) and a 
chart of memory requirements (Figure 2). 

  

Fig. 1.The relationships between  
algorithms in terms of execution time [5]. 

Fig. 2.The relationships between algorithms in 
terms of memory requirements [5]. 

The introduced binary directed relationships are transitive and, consequently, allow 
us to perform a comprehensive comparative analysis of all the algorithms. It should be 
noted that there is a two-direction relationship between some of the algorithms (for 
example, between FPGrowth and LCMFreq v.2/v.3in Figure 1, EClat and dEClat in 
Figure 2), which means that, depending on the type of initial data, such algorithms 
demonstrate approximately equal results and are considered on a par in this respect. 
Besides, while it is clearly seen in the first chart which algorithms outperform the 
others (they are marked with flags), it is impossible in principle to tell the "winner" in 
the second because there are algorithms that were not compared in terms of the volume 
of memory used (for example: Apriori, LCMFreqv.2/v.3, PPV) at articles, where they 
were described. Nevertheless, the second chart is useful in that it gives us some idea of 
the difference between some of the algorithms in terms of memory requirements. 

Just like the authors of the studies we refer to, we consider execution time to be the 
most important characteristic. The experimental data shown on the charts above (Figure 
1) leads to the conclusion that Relim and PrePost+ are the most efficient 
computationally. We will look at them in greater detail alongside with classical 
algorithms. 
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3.1. Apriori 

This algorithm was proposed by the author of theory of association rules Rakesh 
Agrawal [2] in 1994 and is one of the first of its kind. As noted earlier, it is a typical 
representative of "candidate-generation-and-test" approach.  

The main part of the algorithm (search of frequent itemsets) consists of several 
stages, each of which consists of the following steps: 

� candidate generation 

� candidate counting 
Candidate generation is a step at which the algorithm scans the database and 

generates a lot of -element of candidates where  is the number of stage. At this stage, 
the support of candidates is not calculated. 

Candidate counting is a step at which the support is evaluated for each -element 
candidate. Candidates whose support is less than the minimum set by the user 
(MinSupport) are also pruned at this step. The remaining -element itemsets are 
considered frequent. The clipping of candidates is done on the basis of the anti-
monotony property which states that all subsets of a frequent set must be frequent. 

Of course, the anti-monotony property allows us not to consider all possible 
combinations of items, but even such a scan with clipping is computationally 
inefficient on large data sets. 

3.2. FP-Growth 

This algorithm was published in 2000 by J. Han [10] and was an important contribution 
to the field of mining frequent itemsets because it did not involve explicit generation of 
candidate sets. This approach was later called a pattern-growth method. 

As was pointed out earlier, FP-Growth (Frequency-pattern-Growth) algorithm, just 
like many other algorithms, converts the task of looking for frequent sets to the 
problem of storing a relevant glossary, which problem is solved by using a prefix tree 

an FP-Tree. At the beginning, items in each transaction are sorted in the order of 
descending support. Naturally, infrequent singleton items have already been discarded. 
The data structure itself is built in accordance with the following principles: 

� The root of the tree is labeled as null. 

� Each node  of the tree T consists: item F, a set of children nodes ,  

� support , where  is the path from 
the root of the tree  to a node . 

� all the nodes of the item f. 

� overall support of the item f. 

� The tree is divided into levels, each of which corresponds to an item, and each 
item is associated with a single level. At the same time, the next node in the 
path can be at any level below the current one because all of them are sorted 
in the descending order of their support of corresponding items. 

In the process of the algorithm, a conditional FP-tree (CFP-Tree) is repeatedly 
formed, such an FP-Tree being built only on transactions with a specified item. Let 
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there be an FP-tree T and item F. Conditional FP-Tree will be obtained 
if we: 

1. Leave only the tree nodes on the path from the node v corresponding to the item f 
upwards to the root : . 

2. Increase the value of support  of nodes upwards according to the rule  
 for each . 

3. Delete from  all the nodes corresponding to the item , because, by then, all the 
items lying below the item f will have already been considered. 

It should be noted that  is generated from the tree T without using the transaction 
database. 

The final result is formed by means of a recursive procedure with the following 
parameters: FP-tree T, itemset   and a list of frequentitemsets R. As a result, all 
frequent itemsets containing , are added to the R. All the items F:  are 
processed sequentially by levels of the tree from the bottom up, and if

, then: 

� { } 

� A new tree is generated  

� The procedure is started again with the parameters: . 
Practice has shown that FP-Growth performs worse on test data than many other 

algorithms in terms of execution time (Figure 1), but the same experiments show that it 
makes a more efficient use of memory (Figure 2). This is attributed to what is a unique 
feature of an FP-Tree: if the relative density of the data you deal with is the same 
everywhere, then, beginning with a certain moment, adding new transactions to a tree 
will not cause the number of nodes to change. 

3.3. Relim 

This algorithm was proposed in 2005 in the study by Christian Borgelt [4]. The 
acronym "Relim" illustrates the underlying principle of the algorithm: 
"RecursiveELIMination scheme". Relim tries to find all frequent itemsets with a given 
prefix by lengthening it recursively and renewing support at the same time. The 
approach utilized here is called a "pattern-growth method". Let us look at the stages of 
the algorithm: 

1. The first iteration on the transaction database allows to calculate support for each 
item separately and to exclude infrequent items from each transaction (in the 
example in Figure 4, MinSupport = 3). To improve the performance, the remaining 
items of each transaction are arranged in the order of ascending support. 

2. In the next iteration, the array of lists is constructed as follows: 

� The head of each list is a particular frequent item. Lists are constructed for 
each of them. 

� Transactions starting with an item that corresponds to the head of the list are 
included in each list. 
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� Initially, the lengths of the corresponding lists are recorded in the cells of the 
array, but then the cells are used for storing relative supports of element 
headers in the context of a given prefix, that is {  |  F , prefix

,  - support of ,m – the number of itemsets with this prefix}. One of 
the main aspects of the algorithm is this: itemset support  is equal to 
the relative support  in the context of prefix . 

� Then, the algorithms starts a recursive procedure with the following 
parameters: (1) the structure described above; (2) current prefix (initially 
empty), (3) minimal support. 

� Next, the algorithm moves in two directions: a loop for a given data structure 
and a recursive sequence of procedure calls. 

� In the loop, each element is dealt with separately, and a new data structure of 
the type described above is built on the basis of the list of transactions of each 
element header. 

� The support is calculated for the itemset presented as the union    of 
the current prefix  and the item , and it is then added to the overall result if 
this itemset is a frequent one. 

� The given element header is added to the current prefix and a recursive 
procedure with the resulting data structure and updated prefix is run. 

� The lists of the original data structure and the structure obtained in the 
previous step are combined, the list of the current item header having been 
removed. 

� Then, the next item in the loop is dealt with. 

3.4. PrePost+ 

Proposed by Z. H. Deng [9] in 2015, it is the latest algorithm for identifying frequent 
itemsets. PrePost+ uses three data structures at a time: N-list, PPC-tree and set-
enumeration tree, which explains why it requires more memory than FP-Growth does. 
Although it is an "Apriori-like" algorithm, it has empirically proved superior to many 
other algorithms in terms of execution time (Figure 1). 

A PPC-tree is a tree structure: 

1. It consists of one root labeled as "null", and a set of item prefix subtrees as the 
children of the root. 

2. Each node in the item prefix subtree consists of five fields: item-name, count, 
children-list, pre-order, and post-order. 

� item-name registers which item this node represents. 

� count is the number of transactions presented by the portion of the path 
reaching this node. 

� children-list contains all the children of the node.  

� pre-order is the pre-order rank of the node. 
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� post-order is the post-order rank of the node. 
For each node, its pre-order is the sequence number of the node when the tree is 

scanned by pre-order traversal, and its post-order is the sequence number when the tree 
is scanned by post-order traversal. 

For each node N in a PPC-tree, we form <(N.pre-order,N.post-order):count>  the 
PP-code of N. 

The N-list of a frequent itemset is a sequence of all the PP-codes registering the 
item from the PPC-tree, with such PP-codes arranged in the ascending order of their 
pre-order values. The N-list of an itemset is formed, by using special rules, on the basis 
of the PP-codes corresponding to the items of the itemset. 

A set-enumeration tree is a tree which consists of frequent items. All the items in 
the tree are arranged in the descending order of their support. Each node stores a single 
frequent item. 

The framework of PrePost+ consists of the following: 

� Constructing an PPC-tree and identify all frequent 1-itemsets; 

� Constructing the N-list of each frequent 1-itemset on the basis of PPC-tree; 

� Scanning the PPC-tree to find all frequent 2-itemsets; 

� Mine all frequent k-itemsets (k>2). 
The algorithm is based on two properties: 

(1) For the given N-list of the itemset F  consisting of k items 
, we can calculate the support   .  

(2) F   F   :  F   : the 
following is true:  .  

Indeed, if , then any transaction containing , also contains , from 
which the above identity obviously results from. The main difference between PrePost 
and PrePost+ lies in the strategy of pruning candidates for the status of frequent 
itemsets. PrePost+ uses itemset equivalence as a pruning strategy while PrePost utilizes 
the single path property of an N-list as a pruning strategy [7]. For the purpose of 
facilitating the mining process, PrePost+ uses a set-enumeration tree to provide the 
search space for frequent itemsets. 

3.5. Review of Other Algorithms 

Apriori Hybrid[3] (1994).Category: "candidate-generation-and-test". 
Data structures used: a hash-tree or a hash-table is used for storing generated 

candidate sets (it simplifies the calculation of support for new sets), and two-dimension 
number array for storing frequent itemsets. Each of such itemset has a unique identifier. 
It is these identifiers that are used for indexing. 

Some key features: the algorithm applies the same principles as Apriori does, but it 
does not refer to the initial transaction database in order to calculate the support of each 
itemset. Instead, the techniques of hashing and intersecting the itemsets are used. 

Eclat [14] (2000).Category: "candidate-generation-and-test". 
Data structures used: what is called Lettuces is partially ordered sets, in which each 

pair of elements has unique supremum and infinum. 
Some key features: all the candidates are stored in a special data structure called 

Lattuces. During the search, the algorithm passes this data structure widthwise and 
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depthwise. One of the main heuristics is that the algorithms strives to partition the 
itemset into subsets and look at them separately. In the process of looking for frequent 
itemsets, Eclat tries to identify the equivalence classes, thus pruning the range of 
possible candidates. 

dEclat [15] (2003).Category: "candidate-generation-and-test". 
Data structures used:diffset is a data structure that is capable of storing, 

intersecting and combining itemsets. 
Some key features:dEclat is a modification of the previous algorithm by the same 

authors [14]. The main departure of this algorithm from Eclat is the use of a new data 
structure that allows to prune a large number of candidates. This algorithm also uses 
the concept of equivalency based on the values of the function defined for itemsets.  
One diffset stores equivalence classes, and the other diffset stores the prefixes of 
candidates of varying length. 

LCMFreqv.2/v.3 [12][13] (2004-2005).Category: "pattern-growth method". 
Data structures used: this algorithm uses a combination of common structures – 

bitmap, prefix tree and array list. 
Some key features: a prefix tree contains possible candidates for frequent itemsets, 

the order of items being clearly fixed. Original transactions are stored in an array list. 
Bitmap data structure is used for calculating support in a more efficient way. The 
shared use of these data structures varies from one version of the algorithm to another. 
V.3 is considered by the authors of the algorithm to be the most efficient of all. It is this 
version that we used for our experiments. Further in the text, we refer to it as 
LCMFreq. 

H-mine [11] (2007).Category: "pattern-growth method". 
Data structures used: H-struct is a data structure that stores frequent itemsets 

together with references to the corresponding transactions in the original transaction 
database. The method of its construction is similar to that of FP-Growth; however, 
instead of storing transactions explicitly, the algorithm operates with references to 
them. It is thanks to this feature that H-mine outperforms many algorithms in the 
efficiency of memory use (as you can see in Figure 2). 

Some key features: the method of scanning H-struct is basically the same as that in 
FP-Growth. What differentiates one of the two algorithms from the other is the 
approach to storing initial data. 

PPV[6] (2010).Category: "candidate-generation-and-test". 
Data structures used: a PPC-tree is the same prefix tree as the one used in the 

algorithm PrePost+. Node-list is a data structure that consists of PP-codes formed on 
the basis of a PPC-tree. It is absolutely identical to N-list, the only difference between 
Node-list and N-list being that Node-list use descendant nodes to represent an itemset 
while N-list represent an itemset by ancestor nodes. 

Some key features: the PPC-tree stores the original transactions. Candidate for the 
status of frequent itemsets are stored in the Node lists. The problem of calculating the 
support of candidates boils down to the operation of intersecting Node-lists, which is 
done in linear time. The operation of intersecting Node-lists is the key feature of PPV 
algorithm. 

PrePost [7] (2012).Category: "candidate-generation-and-test". 
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Data structures used:a PPC-tree is the same prefix tree as the one utilized in 
PrePost+. The other data structure used in this algorithm is N-list that consists of PP-
codes formed on the basis of a PPC-tree. 

Some key features: as noted by the authors themselves, the main difference between 
PrePost and PrePost+ is the pruning strategies used: PrePost+ adopts itemset 
equivalence as the pruning strategy whereas PrePost utitizes single path property of N-
list for this purpose. To facilitate the mining process, PrePost+  uses a set-enumeration 
tree to represent the search space for frequent itemsets. The remaining steps of these 
algorithms are similar to each other. 

FIN [8] (2014).Category: "candidate-generation-and-test". 
Data structures used:а Node-set is a structure that is identical to N-list and Node-

list, but it uses twice as little memory since it requires to store either pre-order 
parameter or post-order one instead of storing both of them at a time. A POC-tree (Pre-
Order Coding tree) is a prefix tree that is absolutely identical to a PPC-tree, but it does 
not store parameter post-order at all. A set-enumeration tree is a tree that stores all 
possible items in the ascending order of their support. Each node of the tree stores a 
single frequent item. 

Some key features: in many aspects, this algorithm is similar to Pre-Post, the used 
data structures being the only difference between the two algorithms. 

4. Experiments 

The chart of relationship shown in Figure 2 is meaningful because it is built on the 
basis of real empirical evidence. The facts that each pair of algorithms was compared 
on the same databases (1), that the algorithms in each pair were realized in one and the 
same programming language (2), and that the same computing equipment was utilized 
in comparing each pair of algorithms (3), provide a valid basis for concluding which of 
the twelve algorithms is the most efficient. However, the fact that the chart of 
relationship was built based on separate comparisons is a drawback of this chart as a 
whole. It is for this reason that we ran our own experiments and compared the 
performance of all the twelve algorithms in likely conditions in terms of execution 
time. 

For the purposes of this study, we selected the Mushroom data set mentioned 
almost in all the reviewed publications. The average transaction length is 23, the 
glossary of attributes consists of 119 elements, and the total number of transactions 
amounts to 8124. The data contain a description of mushroom species and their 
characteristics. We used implementations, which exactly corresponded author's 
algorithms and pseudocodes. All the experiments were run on a computer with the 
following processor: Intel(R) Core(TM) i7-4700HQ CPU @ 2.40GHz, 12.0 GB RAM. 
All the algorithms were realized on Java 8. 

Table 1.Execution time of Mushroom experiments (sec). Source:[5].  
Minimal 
support 

Pre 
Post+ Relim FIN PrePost PPV H-mine dEclat 

FP-
Growth 

LCM 
Freq Eclat 

Apriori 
Hybrid Apriori 

70% 401,1 397,6 412,5 415,2 417,6 419,4 426,1 427,9 429,9 434,9 437,5 438,2 

75% 373,3 372,2 383,8 385,1 389,9 393,0 403,4 404,1 409,1 416,1 419,2 422,9 
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80% 351,8 341,1 362,9 365,1 373,3 374,89 379,8 377,0 382,6 391,2 392,9 395,0 

85% 337,6 332,9 349,5 348,6 358,8 360,2 373,1 375,5 380,3 390,7 394,1 394,1 

90% 328,1 327,9 340,1 345,6 349,1 350,4 359,3 362,9 364,8 375,2 378,9 379,0 
The value of minimal support largely affects the number of sets in the result, their 

length and, of course, execution time. For greater clarity, we measured the value of 
minimum support (MinSupport) by percentage, with this value defined as the ratio of 
the number of transactions containing such itemsets to the total number of transactions. 
As follows from the definition above, this value cannot exceed 100%. By varying this 
value, we finally arrived at the results presented in Table 1. 

These results are graphically represented in Figure 3. 

 
Fig. 3. The chart of execution time of Mushroom experiments (sec). 

As shown by the experiments, the algorithms for finding frequent item sets rank as 
follows in terms of execution time: Relim (1), PrePost+ (2), FIN (3), PrePost (4), PPV 
(5), H-mine (6), dEclat (7), FP-Growth (8), LCMFreq (9), Eclat (10), Apriori Hybrid 
(11), Apriori (12). What is most important is that the results of our experiments are 
fully consistent with the relationship chart of execution time which was built on the 
basis of previous studies of the algorithms. 

But many authors declare that the execution time of the algorithms depends 
heavily on the specifics of the data. So we selected another well-known Chess dataset 
mentioned in many reviewed publications for further research. The dataset contains the 
results of chess games. The average transaction length is 6, the glossary of attributes 
consists of 36 elements, and the total number of transactions amounts to 28056.  We 
have conducted experiments with this dataset and got the results shown in Table 2. 

Table 2.Execution time of Chess experiments (sec).  
Minimal 
support 

Pre 
Post+ Relim FIN PrePost PPV H-mine dEclat 

FP-
Growth 

LCM 
Freq Eclat 

Apriori 
Hybrid Apriori 

70% 807,2 788,2 825,8 838,8 833,6 840,8 853,2 854,2 858,4 880,6 874,4 883,4 

75% 740,6 735,8 753,9 778,9 773,2 787,8 804,4 816,8 818,1 832,1 838,5 845,8 

80% 703,7 682,2 723,8 742,2 736,6 749,6 759,6 762,0 765,2 782,4 785,7 790,0 

85% 678,1 675,4 698,9 709,1 705,5 720,5 746,3 751,0 760,3 780,5 789,0 789,1 

90% 648,2 647,9 672,3 672,2 690,2 700,8 710,5 716,1 724,9 740,5 751,9 754,0 
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These results are graphically represented in Figure 4. 

 
Fig. 4. The chart of execution time of Chess experiments (sec). 

We see that there are no fundamental differences in the relative efficiency of 
algorithms. The rating of the algorithms in terms of execution time has not changed. 
What is common in data structures of the selected datasets?  It turns out that they are 
similar in the terms of indicator, which is called “average cover of a glossary". This 
concept for a dataset is defined as follows: 

 

where  - the glossary of attributes,  – transactions,   - the number of transactions.  
Datasets Mushrooms and Chess have average cover indicators equal to 23.7% and 

22.1%, respectively. However other datasets can have very different values of average 
cover indicator. How will the algorithms work with such datasets?  Since public 
datasets do not have sufficient flexibility to more thoroughly examine this question, we 
wrote a utility to generate random datasets according to the specified parameters: the 
number of transactions, the capacity of a glossary and the average cover of a glossary. 

We have generated а glossary consisted of 70 items, datasets consisted of 90 000 
transactions, and varied the value of the average cover of the glossary. We have 
conducted experiments with a minimum support (MinSupport) equal to 80 and got the 
results shown in Table 3. 

Table 3.Execution time of experiments with different values of average cover (sec). 
Avg 

cover 
Pre 

Post+ Relim FIN PrePost PPV H-mine dEclat 
FP-

Growth 
LCM 
Freq Eclat 

Apriori 
Hybrid Apriori 

2% 2104 2356 2197 2188 2191 2446 2211 2516 2552 2381 2390 2461 

5% 2168 2294 2231 2215 2206 2374 2226 2445 2471 2386 2414 2493 

10% 2237 2263 2280 2261 2265 2306 2269 2405 2423 2419 2452 2551 

15% 2255 2192 2270 2249 2255 2237 2275 2310 2350 2440 2462 2574 

25% 2270 2208 2299 2312 2324 2340 2345 2348 2363 2478 2491 2590 
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It is interesting to note that the results of the experiments in Table 3 clearly 
demonstrate the difference in behavior of "candidate-generation-and-test" and "pattern-
growth method" algorithms. If we place the results on different charts this difference 
becomes more noticeable (Figure 5 and Figure 6). 

 
Fig. 5. The chart of execution time of "candidate-generation-and-test" algorithms (sec). 

 
Fig. 6. The chart of execution time of "pattern-growth method" algorithms (sec). 

Certain patterns of behavior common to all algorithms of each type become visible 
on these charts. "Candidate-generation-and-test" algorithms are better for small values 
of the average cover of a glossary (2-15%). At the same time, they are noticeably less 
efficient for large values of this index (15-30%). This fact may be explained: for small 
values of the average cover of a glossary heuristics effectively cut off unsuitable 
candidates, that improves the speed of the algorithm work. The growth of the average 
cover of a glossary makes heuristics work more and more rarely. It finally decreases 
the efficiency of the whole algorithm. However in this interval "pattern-growth 
method" algorithms effectively use their main advantage – the search of local results 
with their further extension.  

V. Busarov et al. / The Choice of Optimal Algorithm for Frequent Itemset Mining 223



5. Conclusion and Ideas for Further Research 

We hope that the results of our research can be useful for developers for choosing 
the appropriate algorithm for mining of frequent itemsets according to the 
characteristics of the dataset. The simple calculation of the average cover of a glossary 
in the selected dataset allows at least to determine the appropriate type of an algorithm 
("candidate-generation-and-test" or "pattern-growth method") and to restrict the 
search of the most suited algorithm. We are planning to expand this study to cover any 
new approaches to finding frequent itemsets if such approaches appear. It is also our 
intention to undertake a more serious comparison of the algorithms both in terms of 
execution time and memory requirements by running experiments on large databases, 
such as Kosarak, the latter database notably containing 990002 transactions and 41270 
possible attributes. It also makes sense in the future to look at the implementation of 
these algorithms in distributed environments. 
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