
Adding Verbalization to Graphical

Ontology Editor OWLGrEd

Renārs LIEPIŅŠa, Normunds GRŪZĪTISa,b, Kārlis ČERĀNSa,b,
Jūlija OVČIŅŅIKOVAa,b, Uldis BOJĀRSa,b and Edgars CELMSa,b

aInstitute of Mathematics and Computer Science, University of Latvia

Raina bulvaris 29, Riga, LV-1459, Latvia
bFaculty of Computing, University of Latvia

Raina bulvaris 19, Riga, LV-1536, Latvia
{renars.liepins, normunds.gruzitis, karlis.cerans, julija.ovcinnikova, uldis.bojars,

edgars.celms}@lumii.lv

Abstract. To participate in Semantic Web projects, domain experts need to be able
to understand the ontologies involved. Visual notations can provide an overview of
the ontology and help users to understand the connections among entities. However,
users first need to learn the visual notation before they can interpret it correctly.
Controlled natural language representation would be readable right away and might
be preferred in case of complex axioms, however, the structure of the ontology
would remain less apparent. To achieve the combination of the graphical and
Controlled natural language approaches (CNL), we describe the possibility of
adding CNL information into graphical OWL ontology editor OWLGrEd.

Keywords. OWL, Ontology visualization, Contextual verbalization, Controlled
natural language

1. Introduction

Semantic Web technologies have been successfully applied in pilot projects and are
transitioning toward mainstream adoption in the industry. In order for this transition to
be successful, there are still barriers to be overcome. One of them are the difficulties that
domain experts have in understanding mathematical formalisms and notations that are
used in ontology engineering.

Visual notations have been proposed as a way to help domain experts to work with
ontologies. Indeed, when domain experts collaborate with ontology experts in designing
an ontology “they very quickly move to sketching 2D images to communicate their
thoughts” [1]. The use of diagrams has also been supported by an empirical study done
by Warren et al. where they reported that “one-third [of participants] commented on the
value of drawing a diagram” to understand what is going on in the ontology [2].

Despite the apparent success of the graphical approaches, their unconditional use is
still somewhat problematic. When a novice user wants to understand a particular
ontology, he or she cannot just look at the diagram and know what it means. The user
first needs to learn the syntax and semantics of the notation – its mapping to the
underlying formalism. This limitation has long been noticed in software engineering [3]
and, for this reason, formal models in software engineering are often translated into

Databases and Information Systems IX
G. Arnicans et al. (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-714-6-17

17

informal textual documentation by systems analysts, so that they can be validated by
domain experts [4].

A similar idea of automatic conversion of ontologies into seemingly informal
controlled natural language (CNL) texts and presenting the texts to domain experts has
been investigated by multiple groups [5,6,7]. CNL is more understandable to domain
experts and end-users than the alternative representations because the notation itself does
not have to be learned, or the learning time is very short. However, the comparative
studies of textual and graphical notations have shown that while domain experts that are
new to graphical notations better understand the natural language text, they still prefer
the graphical notations in the long run [8,9]. It leads to a dilemma of how to introduce
domain experts to ontologies. The CNL representation shall be readable right away and
might be preferred in case of complex axioms (restrictions) while the graphical notation
makes the overall structure and the connections more comprehensible.

We elaborate here on an approach that combines the benefits of both graphical
notations and CNL verbalizations. We show, how to extend the graphical notation with
interactive contextual verbalizations of the axioms that are represented by the selected
graphical element. The graphical representation gives the users an overview of the
ontology while the contextual verbalizations can explain what a particular graphical
element means. Thus, domain experts that are novices in ontology engineering shall be
able to learn and use the graphical notation rapidly and independently without special
training.

Throughout this paper we refer to the OWLGrEd visual notation [10] and ontology
editing and visualization tools that are using it. The OWLGrEd notation is a compact and
complete UML-style notation for OWL 2 ontologies [11]. It relies on Manchester OWL
Syntax [12] for certain class expressions. This notation is implemented in the OWLGrEd
ontology editor1 and its online ontology visualization tool2 [13]. We describe in this
paper the principles and architecture for introducing the natural language information
into the OWLGrEd ontology editor, as well as architecture of web-based ontology
verbalization environment creation. The OWLGrEd editor extension by means of CNL
support features relies on a plugin mechanism for the OWLGrEd editor [14].

In Section 2, we present the general principles of extending graphical ontology
notations with contextual natural language verbalizations. In Section 3, we overview the
OWLGrEd ontology editor notation, present on example of ontology online verbalization
on the basis of the OWLGrEd graphical ontology notation, as well as describe
implementation of the CNL support within the OWLGrEd editor. Section 4 then
summarizes the article.

2. Contextual Verbalization of Graphical Ontology Notations: the Vision

This section outlines the approach for contextual verbalization of graphical elements in
ontology diagrams [15]. We start with a motivating example. During the outline of the
contextual verbalization vision focusing particularly on OWL ontologies, we shall
assume that the ontology and its graphical presentation have already been created and
that the ontology symbols (names) are lexically motivated and consistent.

1 http://owlgred.lumii.lv
2 http://owlgred.lumii.lv/online_visualization/

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd18

2.1. Motivating Example

In most diagrammatic OWL ontology notations, object property declarations are shown
either as boxes (for example in VOWL [16]) or as labeled links connecting the property
domain and range classes as in OWLGrEd [10]. Figure 1 illustrates a simplified ontology
fragment that includes classes Person and Thing, an object property likes and a data
property hasAge. This fragment is represented in a (controlled) natural language, as well
as using three alternative formal notations: Manchester OWL Syntax [12], VOWL and
OWLGrEd. As can be seen, the visualizations are tiny and may already seem self-
explanatory. Nevertheless, even in this simple case, the notation for domain experts may
be far from obvious. For example, the Manchester OWL Syntax uses the terms domain
and range when defining a property, and these terms may not be familiar to a domain
expert. In the graphical notations, the situation is even worse because the user may not
even suspect that the edges represent more than one assertion and that the assertions are
far-reaching. In the case of likes, it means that everyone that likes something is
necessarily a person, and vice versa.

We have encountered such problems in practice when introducing ontologies in the
OWLGrEd notation to users familiar with the UML notation. Initially, it turned out that
they are misunderstanding the meaning of the association edges. For example, they
would interpret that the edge likes in Figure 1 means “persons may like persons”, which
is true, however, they would also assume that other disjoint classes could also have this
property, which is false in OWL because multiple domain/range axioms of the same
property are combined to form an intersection. Thus, even having a very simple ontology,
there is a potential for misunderstanding the meaning of both the formal textual notation
(e.g., Manchester OWL Syntax) and the graphical notations.

Figure 1. A simplified ontology fragment alternatively represented by using Manchester OWL Syntax,

VOWL and OWLGrEd, and an explanation in a controlled natural language [15]

2.2. Proposed Approach

We propose to extend graphical ontology diagrams with contextual on-demand
verbalizations of OWL axioms related to the selected diagram elements, with the goal to
help users to better understand their ontologies and to learn the graphical notations based
on their own and/or real-world examples.

The contextual verbalization of ontology diagrams relies on the assumption that
every diagram element represents a set of ontology axioms, i.e., the ontology axioms are
generally presented locally in the diagram, although possibly a single ontology axiom
can be related to several elements of the diagram.

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd 19

The same verbalization can be applied to all the different OWL visual notations, i.e.,

we do not have to design a new verbalization (explanation) grammar for each new visual

notation, because they all are mapped to the same underlying OWL axioms. Thus, the

OWL visualizers can reuse the same OWL verbalizers to provide contextual explanations

of any graphical OWL notation.

By reusing ontology verbalizers, existing ontology visualization systems can be

easily extended with a verbalization service. Figure 2 illustrates how the proposed

approach might work in practice:

1. Visualizer is the existing visualization component that transforms an OWL

ontology into its graphical representation.

2. The system is extended by a User Selection mechanism that allows users to

select the graphical element that they want to verbalize.

3. Collector gathers a subset of the ontology axioms that correspond to the selected

graphical element.

4. The relevant axioms are passed to Verbalizer that produces CNL statements –

a textual explanation that is shown to the user.

The actual implementation would depend on the components used and on how the

output of the verbalization component can be integrated into the resulting visualization.

Figure 2. Architecture of a contextual ontology verbalizer [15]

In Section 3 we shall demonstrate the implementation of the architecture in the

context of the OWLGrEd ontology editor.

With the proposed approach, when domain experts encounter the example ontology

in Figure 1, they would not have to guess what the elements of this graphical notation

mean. Instead, they can just ask the system to explain the notation using the ontology

that they are exploring. When the user clicks on the edge likes in Figure 1 (in either visual

notation), the system would show the verbalization that unambiguously explains the

complete meaning of this graphical element:

Everything that likes something is a person. Everything that is liked by something is

a person.

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd20

By applying the proposed approach and by using natural language to interactively
explain what the graphical notation means, developers of graphical OWL editors and
viewers can enable users (domain experts in particular) to avoid misinterpretations of
ontology elements and their underlying axioms, resulting in a better understanding of
both the ontology and the notation.

The verbalization can help users even in relatively simple cases, such as object
property declarations where user’s intuitive understanding of the domain and range of
the property might not match what is asserted in the ontology. The verbalization of OWL
axioms makes this information explicit while not requiring users to be ontology experts.
The value of contextual ontology verbalization is even more apparent for elements whose
semantics might be somewhat tricky even for more experienced users (e.g., some, only

and cardinality constraints on properties, or OWLGrEd generalization forks with disjoint

and complete constraints).
The verbalization of ontology axioms has been shown to be helpful in teaching OWL

to newcomers both in practical experience reports [17] as well as in statistical
evaluations [7].

3. Ontology Verbalization in OWLGrEd

3.1. Overview of the OWLGrEd Notation

OWLGrEd provides a graphical notation for OWL 2, based on UML class diagrams.
OWL classes are typically visualized as UML classes, data properties as class attributes,
object properties as association roles, individuals as objects, cardinality restrictions on
association domain class as UML cardinalities, etc. The UML class diagrams are
enriched with new extension notations, e.g. (cf. [10,18]):

• fields in classes for equivalent class, superclass and disjoint class expressions
written in the Manchester OWL syntax [12];

• fields in association roles and attributes for equivalent, disjoint and super
properties and fields for property characteristics, e.g., functional, transitive,
etc.;

• anonymous classes containing an equivalent class expression but no name;
• connectors (as lines) for visualizing binary disjoint, equivalent, etc. axioms;
• boxes with connectors for n-ary disjoint, equivalent, etc. axioms;
• connectors (lines) for visualizing object property restrictions some, only, exactly,

as well as cardinality restrictions.

Figure 3 contains a demonstration fragment of a Mini University ontology in the
OWLGrEd notation, illustrating the class and subclass notation, data and object property
notation, subproperty and object property restrictions, different ways of representing
individuals, disjoint classes, class assertions and object property assertions. For instance,
classes Student and Teacher are Person class subclasses. The subclass relation is
represented as a generalization set element (a purple horizontal fork, an arrowed line to
the super class and simple lines to subclasses). Class Person is disjoint with
AcademicProgram and Course classes; this is represented textually in the class box using
a prefix “<>” (<>AcademicProgram, <>Course). In a similar way, textually can be
represented superclass (prefix “<”) and equivalent class (prefix “=”) axioms. Another

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd 21

way for representing disjoint classes is using {disjoint} mark at the generalization set, as
in case of Assistant, Docent and Professor classes. An association line between two
classes, corresponding to an object property, may contain cardinality constraints (e.g. the
association role teaches between Teacher and Course, with cardinality 0..2). An object
property restriction can be represented graphically with a red line, marked with an
expression describing the restriction. For example, the arrow marked with
inverse(teaches) only between classes MandatoryCourse and Professor corresponds to
the following restriction in the Manchester notation:

MandatoryCourse SubClassOf inverse teaches only Professor

Figure 3. Demo fragment of Mini University Ontology

Class assertion axioms can be represented through the <<instanceOf>> connector,

connecting a class and an object (e.g. the <<instanceOf>> link between the Academic

program class and the ComputerScience object), or textually, by adding a class name
after the object name separated with a “:” symbol (e.g. for the object Dave:Professor,
“Dave” is the object name and “Professor” – the class name which the object belongs to).

The OWLGrEd tool allows both for ontology authoring (with an option to save the
ontology in a standard textual format, e.g. RDF/XML or OWL Functional Syntax) and
for ontology visualization that includes automated ontology diagram formation and a
layouting step, followed by optional, manual diagram fine tuning.

An important feature of the OWLGrEd ontology editor is its plugin mechanism. The
ontology editor plugins enable means for extending the editor notation and environment,

Course
<inverse teaches min 1 Teacher

<>Person

<>AcademicProgram

Big course
<inverse teaches some

(Docent or Professor) and

inverse teaches some

Student

Simple course
=inverse includes max 1

Academic program
<>Person

<>Course

Docent
<>Student

Teacher

Assistant

Person
<>AcademicProgram

<>Course

{disjoint}

Voluntary course Mandatory course

Professor
<>Student

Student

IntroductionToOWL:

VoluntaryCourse and

SimpleCourse

VisualBasic:

VoluntaryCourse and

SimpleCourse

<<different>>

<<different>>

{disjoint}

Algorithms:MandatoryCourse

Bob:

Charlie:Teacher

Alice:Student

Dave:Professor

ComputerScience:

ComputerEngineering:

takes {<>teaches} 1..*

includes

inverse(teaches) only

takes

teaches

teaches

takes

takes

includes

includes

has enrolled

is enrolled in

1

teaches {<>takes} 0..2

teaches

hasEnrolled

isEnrolledIn

<<instanceOf>>

<<instanceOf>>

includes

hasEnrolled

isEnrolledIn

teaches
<<different>>

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd22

in a similar manner as profiles do for UML class diagrams [19,20]. A plugin to the
ontology editor may include structural editor symbol extensions with fields and visual
effects, as well as editor behavior extensions.

The OWLGrEd plugin mechanism shall be used to support the editor’s extension
which provides CNL verbalizations for user-selected ontology elements.

3.2. Ontology Online Verbalization Example

To show the power of adding lexical information to OWLGrEd, we start with ontology
online visualization and verbalization demonstration. The ontology visualization and
verbalization environment is obtained by:

• adding lexical information to the ontology elements, as they appear in the
OWLGrEd editor;

• generating the visualization environment from an enriched ontology project.

Using Attempto Controlled English (ACE) [21] as a pivot CNL, the ontology
visualization environment shall offer on-demand contextual multilingual verbalizations
of OWL axioms corresponding to different visual elements in the ontology diagram.

The interactive ontology verbalization layer allows users to inspect a particular
element of the presented ontology diagram and receive a verbal explanation of the
ontology axioms that are related to this ontology element. By clicking a mouse pointer
on an element, a pop-up widget is displayed, containing a CNL verbalization of the
corresponding axioms. By default, the OWLGrEd visualizer minimizes the number of
verbalization widgets shown simultaneously by hiding them after a certain timeout. For
users to simultaneously see the verbalizations for multiple graphical elements, there is
an option to “freeze” the widgets and prevent them from disappearing.

A demonstration of our approach, based on the example mini-university ontology, is
available online3. Figure 4 shows a screenshot of the OWLGrEd visualization of this
ontology containing a number of verbalizations.

These verbalizations describe the ontology elements that represent the class Course,
the object property teaches, the individual Alice and the restriction on the class
MandatoryCourse. Verbalizations are implicitly linked to the corresponding elements
using the element labels when possible. While it might be less convenient to identify the
implicit links in a static image, the interactive nature of the combined ontology
visualization and verbalization tool makes it easier for users to keep track of relations
between diagram elements and their verbalizations.

To illustrate the verbalization functionality, let us look at the object property teaches,
represented in the diagram by an edge connecting the class Teacher to the class Course.
It leads to the following ACE verbalization of four axioms:

Every teacher teaches at most 2 courses.

Everything that is taught by something is a course.

Everything that teaches something is a teacher.

If X takes Y then it is false that X teaches Y.

3 http://owlgred.lumii.lv/cnl-demo

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd 23

Figure 4. The example ontology in the OWLGrEd notation with CNL verbalizations (explanations) of selected
diagram elements.

Note that the specific OWL terms, like disjoint, subclass and inverse, are not used
in the ACE statements. The same meaning is expressed implicitly via paraphrasing –
using more general common sense constructions and terms.

In this case, the edge represents not only the domain and range axioms of the
property but also the cardinality of the range and the restriction that teaches is disjoint
with takes (expressed by the if-then statement).

Further information about combining interactive contextual CNL verbalization with
OWLGrEd ontology visualization is available in [15].

3.3. Implementation

To support the ontology verbalization, the lexical information about ontology entities
needs to be introduced, typically using the ontology entity annotation mechanism. The
lexical annotation can be added to an ontology by any ontology editor, however, the
OWLGrEd editor equipped with its CNL plugin offers explicit services for convenient
lexical information entry, including the simple lexical form information, as well as user-
friendly services for much more involved entry of object property syntactic valence
information. The CNL plugin of the OWLGrEd editor allows:

• Entry of entity lexical information;
• Computational lexicon generation;
• Ontology verbalization.

The first step towards the ontology verbalization is the lexical information entry.
Technically, specific lexical information fields for classes, association roles, attributes,
objects as well as the ontology header information (the ontology reference symbol in the
project diagram) are added into the OWLGrEd editor. The current implementation

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd24

supports the lexical information entry for English which is an analytic language and for

Latvian which is a highly inflected language.

Figure 5 illustrates the bilingual lexical information fields for classes. Information

that needs to be entered is English and Latvian labels of the respective class. The class

name is automatically generated from the English or Latvian label (English by default).

Additionally, a more detailed lexical information is generated for each language and

stored in a JSON format into the repository.

Figure 5. A class declaration dialog that includes input fields for the lexical information

Figure 6 illustrates the detailed lexical information generated for the class

Mandatory course from the English and Latvian labels given in Figure 5. In English it is

basically sufficient to infer the plural form of a class label, which is used for verbalizing

specific axioms, while in Latvian it is necessary to infer also the grammatical gender and

the internal structure of multi-word labels to ensure correct syntactic agreement in a

sentence.

{

 "URI_gen":"MandatoryCourse",

 "entry.plural":"mandatory courses",

 "entry.gender":"neuter",

 "entry.singular":"mandatory course",

 "label_gen":"Mandatory course",

 "language":"en",

 "element":"class"

}

{

 "URI_gen":"ObligātaisKurss",

 "entry.components":"[obligātais][kurss]",

 "entry.number":"regular",

 "entry.gender":"masculine",

 "entry.pattern":"[A][N]",

 "label_gen":"Obligātais kurss",

 "language":"lv",

 "element":"class"

}

Figure 6. English and Latvian lexical information for the class Mandatory course

Lexical information input fields for association roles are shown in Figure 7. For each

language, there are three fields present. Apart from the field Predicate where the lexical

label of the property has to be entered, there are two contextual helper fields: Subject –

provides the lexical label of the domain class; Object – provides the lexical label of the

range class. Subject and object field values are filled automatically based on the domain

and range classes. Additionally, there is a shared input field Type of predicate which

determines whether the predicate is expressed as a verb or a noun and, thus, what

grammatical constructions the OWL verbalizer should use.

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd 25

Figure 7. Lexical information fields for an association role

The role of the contextual subject and object fields is twofold. First, they help to

specify the property label consistently, including the use of auxiliary verbs and
prepositions, so that the predicate makes a grammatically and lexically valid clause.
Consequently, the automatically generated property names are more consistent and
readable as well. Second, this is an implicit and intuitive means how the user specifies
the syntactic valence of the predicate – the grammatical agreement between the predicate
and its subject and object. While it is not an issue in highly analytical languages like
English, the grammatical case of the subject and object often depends on the particular
verb in inflected languages. The CNL plugin suggests the valence pattern by
automatically selecting the most likely inflectional forms of the subject and object labels
instead of explicitly exposing the user to the grammatical cases (accusative, locative,
dative etc.). If the automatic suggestion is incorrect, the user implicitly corrects the
grammatical case by selecting the right inflectional form of the label.

A somewhat similar approach is used in LEMON Assistant [22], a web application
that allows to equip existing ontologies with lexicalization patterns according to the
LEMON model [23], an RDF model for representing lexical information relative to
ontology entities. In order to help the user in checking the correctness of a lexicalization
pattern, LEMON Assistant generates a sentence in natural language based on the subject-
predicate-object labels provided by the user.

Based on Subject, Object and Predicate values, detailed lexical information for the
association role is generated as illustrated in Figure 8: the user has formed a
grammatically correct clause “[ikviens] students apgūst [kādu] kursu” (“[every] student

takes [a] course”) from which the CNL plugin is able to generate the entire lexical and
grammatical structure characterizing the predicate.

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd26

Figure 8. English and Latvian lexical information for an association role

The acquired lexical information is used in the on-demand verbalization of ontology
axioms that underlie graphical elements in an ontology diagram as exemplified in
Figure 4. The lexical labels of ontology entities are used also in the presentation of
ontology diagrams, depending on the rendering language (e.g. English or Latvian) which
the user has chosen. Figure 9 illustrates a fragment of the Mini University ontology
diagram rendered alternatively in English and Latvian.

Figure 9. A fragment of an ontology diagram rendered alternatively in English and Latvian

The essential lexical information is saved during the ontology export in textual form
as AnnotationAssertion axioms, e.g.:

AnnotationAssertion(languageFields:LabelEn :Course "Course") – for English
AnnotationAssertion(languageFields:LabelLv :Course "Kurss") – for Latvian

Student

Course

Academic program

Pasniedzējs

Akadēmiskā programma

Kurss

Teacher

Students

includes

has enrolled is enrolled in 1

takes 1..*

teaches 0..2

iesaista ir iekļauts 1

pasniedz 0..2

apgūst 1..*

iekļauj

{

 "URI_gen":"apgūst",

 "predicate.entry.tense":"simple",

 "predicate.entry.present":"apgūst",

 "predicate.entry.past":"apguva",

 "predicate.entry.infinitive":"apgūt",

 "predicate.entry.voice":"active",

 "predicate.entry.preposition":"",

 "predicate.entry.object":"accusative",

 "predicate.entry.subject":"nominative",

 "POS":"verb",

 "subject.entry.gender":"masculine",

 "subject.entry.number":"regular",

 "subject.entry.pattern":"[N]",

 "subject.entry.components":"[students]",

 "object.entry.gender":"masculine",

 "object.entry.number":"regular",

 "object.entry.pattern":"[N]",

 "object.entry.components":"[kurss]",

 "label_gen":"apgūst",

 "language":"lv",

 "element":"objectProperty"

}

{

 "URI_gen":"takes",

 "predicate.entry.tense":"simple",

 "predicate.entry.present":"takes",

 "predicate.entry.participle":"taken",

 "predicate.entry.infinitive":"take",

 "predicate.entry.voice":"active",

 "predicate.entry.preposition":"",

 "POS":"verb",

 "label_gen":"takes",

 "language":"en",

 "element":"objectProperty",

 "subject":"student",

 "object":"course"

}

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd 27

For association roles (object properties) the information saved into ontology consists
of basic lexical form, as well as part of speech information (whether the property is
expressed by a noun, or a verb). The saved information can be extended also to include
the syntactic valence information to obtain a self-contained verbalizable ontology.

From the explicitly entered and implicitly inferred lexical information (Figure 6 and
Figure 8), a multilingual computational lexicon is generated and compiled for each
ontology. This is done by using Grammatical Framework (GF) [24] which is convenient
and well-suited for the implementation of multilingual CNLs. The ontology-specific
lexicon is then linked to a pre-compiled ontology-independent multilingual GF grammar
for the OWL subset of ACE [25]. We follow a two-level OWL-to-CNL approach
suggested in [26] in order to map the ontology symbols (entity names) to their lexical
and inflectional forms in different languages and in different syntactic constructions.
Although we have experimented only with English and Latvian, GF provides a reusable
resource grammar library for about 30 languages, which greatly facilitates adding a new
language. Note that GF is used also by the above mentioned LEMON Assistant.

The interactive ontology visualization for the web environment is generated from an
ontology with verbalization information presented in OWLGrEd ontology editor the in
following steps:

• Verbalization information is generated for each ontology element;
• The ontology graphical structure (boxes, lines with their compartment and style

information) is coded into a JSON format;
• The acquired JSON structure is enriched with the verbalization information;
• The JSON structure is loaded into the ontology visualization web environment,

where the ontology graphical structure is presented with enabled verbalization
context information.

4. Conclusions

Mathematical formalisms used in ontology engineering are hard to understand for
domain experts. Usually, graphical notations are suggested as a solution to this problem.
However, the graphical notations, while preferred by domain experts, still have to be
learned to be genuinely helpful in understanding. Until now the only way to learn these
notations was by reading the documentation.

In this article, we demonstrate how to combine ontology visualizations and CNL
verbalizations in order to solve the learning problem. Using this approach, the domain
expert can interactively select a graphical element and receive the explanation of what
the element means. The explanation is generated by passing the corresponding axioms
of the element through an existing verbalization service. The service returns natural
language sentences explaining the OWL axioms that correspond to the selected element,
thus explaining what it means.

CNL explanations can help domain experts to rapidly and independently learn and
use the graphical notation from the beginning, without extensive training, making it
easier for domain experts to participate in ontology engineering, thus solving one of the
problems that hinder the adoption of Semantic Web technologies in the mainstream
industry.

Although the ontology has to be encoded with lexical information to enable its
verbalization, our experience with OWLGrEd editor, outlined in this paper, shows that

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd28

convenient user interface for this enrichment can be offered and is able to handle also
the sophisticated grammatical constructs (verb syntactic valences) in a user friendly way.

Acknowledgments

This work has been supported by the ESF project 2013/0005/1DP/1.1.1.2.0/13/APIA/
VIAA/049 and the Latvian State Research program NexIT project No. 1 “Technologies
of ontologies, semantic web and security” at the Institute of Mathematics and Computer

Science, University of Latvia.

References

[1] J. Howse, G. Stapleton, K. Taylor, P. Chapman, Visualizing ontologies: A case study. In: The Semantic

Web – ISWC 2011, pp. 257–272. Springer, 2011.
[2] P. Warren, P. Mulholland, T. Collins, E. Motta, The usability of Description Logics. In: The Semantic Web:

Trends and Challenges, pp. 550–564, Springer, 2014.
[3] K. Siau, Informational and computational equivalence in comparing information modeling methods.

Journal of Database Management 15(1), 73–86, 2004.
[4] P.J. Frederiks, T.P. Van der Weide, Information modeling: The process and the required competencies of

its participants, Data & Knowledge Engineering 58(1), 4–20, 2006.
[5] R. Power, A. Third, Expressing OWL axioms by English sentences: dubious in theory, feasible in practice.

In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 1006–
1013, Association for Computational Linguistics, 2010.

[6] R. Stevens, J. Malone, S. Williams, R. Power, A. Third, Automating generation of textual class definitions
from OWL to English. J. Biomedical Semantics 2(S-2), S5, 2011.

[7] T. Kuhn, The understandability of OWL statements in controlled English. Semantic Web 4(1), 101–115,
2013.

[8] A.Ottensooser, A. Fekete, H.A. Reijers, J. Mendling, C.Menictas, Making sense of business process
descriptions: An experimental comparison of graphical and textual notations. Journal of Systems and

Software 85(3), 596–606, 2012.
[9] Z. Sharafi, A. Marchetto, A. Susi, G. Antoniol, Y.G. Gueheneuc, An empirical study on the efficiency of

graphical vs. textual representations in requirements comprehension. In: 21st International Conference

on Program Comprehension, pp. 33–42, IEEE, 2013.
[10] J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, A. Sproģis, UML-style graphical notation and editor for

OWL 2. In: Perspectives in Business Informatics Research, pp. 102–114, Springer 2010.
[11] B. Motik, P.F. Patel-Schneider, B. Parsia, OWL 2 Web Ontology Language Structural Specification and

Functional-Style Syntax, 2009.
[12] M. Horridge, P.F. Patel-Schneider, OWL 2 Web Ontology Language Manchester Syntax. W3C Working

Group Not, 2009.
[13] R. Liepins, M. Grasmanis, U. Bojars, OWLGrEd ontology visualizer. In: ISWC Developers Workshop

2014, CEUR, 2015.
[14] K.Čerāns, J.Ovčiņņikova, R.Liepiņš, A.Sproģis, Advanced OWL 2.0 Ontology Visualization in

OWLGrEd In: A.Caplinskas, G.Dzemyda, A.Lupeikiene, O.Vasilecas (eds.), Databases and Information

Systems VII, Frontiers in Artificial Intelligence and Applications, IOS Press, Vol 249, pp.41-54, 2013.
[15] R. Liepiņš, U. Bojārs, N. Grūzītis, K. Čerāns, E. Celms, Towards self-explanatory ontology visualization

with contextual verbalization. In: Databases and Information Systems: 12th International Baltic

Conference, DB&IS 2016, Riga, Latvia, July 4-6, 2016, Proceedings. pp. 3–17, Springer, 2016.
[16] S.Lohmann, S. Negru, F. Haag, T. Ertl, VOWL 2: User-oriented visualization of ontologies. In:

Knowledge Engineering and Knowledge Management, pp. 266–281, Springer, 2014.
[17] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H. Wang, C. Wroe, OWL

pizzas: Practical experience of teaching OWL-DL: Common errors & common patterns. In: Engineering

Knowledge in the Age of the Semantic Web, pp. 63–81, Springer, 2004.
[18] J. Barzdins, G. Barzdins, K. Cerans, R. Liepins, A. Sprogis, OWLGrEd: a UML Style Graphical Notation

and Editor for OWL 2. In: Proc. of OWLED 2010, 2010.

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd 29

[19] Unified Modeling Language: Infrastructure, version 2.1. OMG Specification ptc/06-04-03,
http://www.omg.org/docs/ptc/06-04-03.pdf

[20] Unified Modeling Language: Superstructure, version 2.1. OMG Specification ptc/06-04-02,
http://www.omg.org/docs/ptc/06-04-02.pdf

[21] N.E. Fuchs, K. Kaljurand, T.Kuhn, Attempto Controlled English for knowledge representation. In:
Reasoning Web, pp. 104–124, Springer, 2008.

[22] R. Mariano, C. Unger, Lemonade: A Web Assistant for Creating and Debugging Ontology Lexica. In:
Proceedings of the 20th International Conference on Applications of Natural Language to Information
Systems (NLDB), pp. 448–452, 2015.

[23] J. McCrae, G. Aguado-de-Cea, P. Buitelaar et al., Interchanging lexical resources on the Semantic Web.
Language Resources and Evaluation 46(4), 701–719, 2012.

[24] A. Ranta, Grammatical Framework, a type-theoretical grammar formalism. Journal of Functional

Programming 14(2), 145–189, 2004.
[25] J. Camilleri, N. Fuchs, K. Kaljurand, ACE grammar library. Tech. Rep. MOLTO Project Deliverable

D11.1 2012.
[26] N. Gruzitis, G. Barzdins, Towards a more natural multilingual controlled language interface to OWL. In:

Proceedings of the 9th International Conference on Computational Semantics. pp. 1006–1013, 2011.

R. Liepiņš et al. / Adding Verbalization to Graphical Ontology Editor OWLGrEd30

