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Abstract. The procedure for obtaining the particle size distribution by visual 
inspection of a sample involves stereological errors, given the cut of the sample. A 
cut particle, supposedly spherical, with radius R, will be counted as a circular 
particle with radius r, r≤R. The difference between r and R depends on how far 
from the center of the sphere the cut was performed. This introduces errors when 
the extrapolation of the properties from two to three dimensions during the 
analysis of a sample. The usual method is to correct the distribution by 
probabilistic functions, which have large errors. This paper presents a method to 
reduce the error inherent to this problem. The method is to compute a simulation 
of the preparation process in a sample whose structure can be described by non-
penetrating spheres of various diameters which meet a known probability 
distribution function, for example, a log-logistic function, or even a constant 
function. For each distribution radius, a number of spheres is generated and 
virtually cut, generating a bi-dimensional (2D) distribution. The 2D curves of the 
spheres distribution obtained in this simulation are compared with that obtained by 
the experimental procedure and then the parameters of the threedimensional 
distribution function are adjusted until the 2D curves are similar to the 
experimental one using the optimization method Simulated Annealing for the 
curve-fitting. In future this method will be applied to the analysis of the oil 
reservoir rocks. 
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Introduction 

The stereology is a interdisciplinar study field which aims to evaluate the three 
dimensional (3D) properties of a sample using a material bidimensional (2D) 
information. Several geometrics and statistical methods are applied to achieve this 
target [1]. 

The stereology has many applications in several sciences, as biology, medical 
sciences, material sciences, and wherever it is necessary to obtain information of 
dimensions higher from samples with inferior dimensions. The common stereology 
challenge is to understand the structural inner three-dimensional arrangement based on 
the analysis of the structure slices that show only two-dimensional information for that 
stereological principles take into consideration geometry and probability statistics [2].  
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It is inherent, however, to the stereological technique, the introduction of errors 
during the extrapolation process. Garcia et. al. [3] state that A major problem of 
sampling/slicing is the loss of dimension; a 3D object becomes a 2D area, a surface 
(2D) becomes a line (1D), a line (1D) becomes a point (0D) and a number (points 0D) 
is lost. A stereological approach provides solutions to this. 

In the last 50 years, stereological studies have appeared in literature more and 
more frequently, the first studies being based on pioneers [4], [5], [6], [7], [8]. The so 
called "new stereology" was developed in the XXth century’s eighties, a collection of 
procedures turning stereology easier and more unbiased [10], [11] - in reality, the 
question of bias and stereology is still under discussion, but new techniques make 
stereology more consistent [12], [13], [14], [15], [2]. 

On the other hand, the idea of estimating stereological parameters from optical 
sections within a thick slice was first used for counting particles in optical disector 
principle [16] and in unbiased sampling brick rule [17], and then in many other 
stereological methods, e.g., nucleator [11] and planar rotator [18] applied to a stack of 
optical sections and estimating the mean particle volume, spatial grid [19], methods for 
estimating the surface area, method of vertical slices [20], and global spatial sampling 
[21] used for the length estimation.  

Indeed, stereology is dynamic and full of perspectives for the future, new 
approaches to old questions still stimulates stereologists to test possibilities, an exciting 
example is the Simulated annealing technique for curve fitting.   

This research evaluated several functions as candidates to represent 3D particle 
size distributions which generated 2D particle size distributions experimentally 
measured through rock samples cut and image analysis.  

The evaluation determined the most adequate function for representing the particle 
size distribution and a new alternative was also proposed: not using a specific function, 
but to optimize a constant distribution.  

1. Methodology 

The experimental procedure to obtain a particle size distribution was the same as [22]. 
A typical particle diameter distribution can be observed in Figure 1. 
 

 
Figure 1. Typical particle size distribution for a sandstone sample obtained by image analysis.  

 

A.N. Diógenes / Particle Size Distribution Correction Method968



1.1. Particle size distribution modeling  

To model a particle size distribution, it was done some considerations:   
� each particle is represented by a sphere;  
� the spheres are non-penetrating;  
� the 3D particle size distribution follows a known unimodal distribution, as a 

log-logistic function with unknown parameters which shall be optimized by a 
Simulated Annealing method;  

  
 
These considerations aim to make the sample particles model as real as possible, 

but yet feasible to optimize. The unimodal function consideration intends to simplify 
the optimization procedure, even if the Figure (1) can be considered a bimodal function, 
it is considered that the oscillation around the 30μm diameter is a fluctuation.  
The functions chosen to model the particle size distribution were the following: 
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These functions, Log-Normal – Eq. (1), FischerTippet – Eq. (2), Shifted-Gompertz 

– Eq. (3) and Log-Logistic Eq. (4), were chosen as unimodal functions and due to its 
flexibility. The log-normal function, for example in Figure 2 for different values of σ, 
can have several shapes, depending on the variables.   

For all these functions the function parameters were randomized and a 3D initial 
particle size distribution was generated.   
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Figure 2. Log-Normal function shapes varying the σ parameter. 

 
The 2D particle size distribution was generated through virtual sphere slices. For 

each distribution radius, a number of 105 times the distribution spheres was generated. 
These spheres are then cut and 2D particles (circles) with smaller radius are then 
created, as shown in Figure 3. R is the real radius, r, the measured radius and h is the 
distance from the center where the slicing plane cut the particle. For example, a particle 
size distribution which has 0.01 (1%) of its particles of radius 3, will have, for this 
radius, 1.000 spheres generated, which will be virtually cut and these cuts can create 
2D particles measurements with radius 3, 2 and 1.   
 

 
Figure 3. Sphere (Particle) cut by a slicing plane illustrating the measurement of a r radius, smaller than R. 
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Both the 2D particle size distribution created by a 3D particle size distribution can 
be observed in the Figure 4 for a Log-Normal distribution. As expected, the created 2D 
curve has a higher frequency of particles with smaller diameter than the 3D curve.  
 

 
 

Figure 4. Log-normal curve and the created 2D after the virtual cuts. 
 

1.2. Simulated Annealing (SA) Algorithm  

The well-known SA technique [23], [24], [25], [26], [27], [28] [29], [9], [30] was used 
to optimize the 3D particle size distribution.  

Once the 3D particle size distribution is generated, a SA algorithm is used to 
adjust the curve parameters to fit the 2D gran size distribution. The sequence of steps 
to optimize the curve is described below:  
  

1. generate a 3D particle size distribution with random parameters;  
2. execute a virtual slicing procedure, generating a 2D particle size 

distribution;  
3. compare the experimental and generated 2D particle size distributions, 

calculating a square error;  
4. modify the 3D particle size distribution parameters and accept or reject 

the modification according to the SA algorithm;  
5. go to step 2 until convergence or iteration limit is reached.  

 
Notice that the optimization is carried on two levels. While the 3D curve is 

directly modified, the 2D generated curve provides the square error. This configuration 
is due the experimental procedure, which provides a 2D particle size distribution, so it 
is necessary to compare both 2D distributions. The square error was calculated as the 
equation (5): 
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The SA algorithm used in this research is the classical algorithm with linear 

cooling schedule, having cc TT ��� 99.01 . The cooling happened after 1000 well 
succeeded iterations.  

The parameter modification was executed at one parameter per iteration. For the 
Log-Normal function, for example, if the t iteration modified the μ parameter, the t+1 
iteration modified the σ parameter. The modification step was 0.01 and it could be 
added or subtracted with 50% of chance for each option. The convergence target was 
10-3 for the square error. The iteration limit was 10.000 iterations without improvement 
in the energy function (square error).  

The technique cost less than one minute to optimize a curve using an Intel® i3 
2.33GHz processor.  

2. Results and discussion  

A typical result for the same particle size distribution from Figure (1) can be observed 
in Figure 5. The square error for this result was 9x10-4.   
 

 
 

Figure 5. Processing result for the particle size distribution exposed in Figure 1. 
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To test which function could model better the particle size distribution, a SA 
process was executed for 21 particle size distributions for all the adopted functions 
without ending the processing with the convergence criteria.  An average square error 
for all the samples can be observed in the Table 1. The function with the best result 
was the Log-Logistic. The obtained square error was 7.63E-04. This indicates that the 
best function for representing the particle size distribution among the analyzed 
functions is the Log-Logistic.  

 
Table 1. Average square error for all the 21 rock samples processed without convergence criteria stop. 

Function Average square error obtained 
Log Normal 1.03E-03 

Shifted Gomperz 8.56E-04 
Fisher Tippett 8.14E-04 
Log Logistic 7.63E-04 

 
To compare the proposed methodology with classic methods, a Log-Normal 

distribution with 10 particle diameters, μ=1.3 and σ=0.4 was adopted as a 3D particle 
size distribution and the virtual cut was executed. The resultant distributions are shown 
in Figure 6.  

 
 

Figure 6. Log-Normal curve with 10 particle diameters, μ=1.3 and σ=0.4 and 2D curve resultant from virtual 
cuts. 

 
The classical method of Schwarz-Saltykov [1], which could be adapted for a curve 
correction, was applied to the resultant 2D curve and a 3D corrected particle size 
distribution was generated. The latter was compared with a particle size distribution 
generated using the proposed methodology through quadratic error calculated in the 3D 
distribution. The corrected distributions and the resulting curves are disposed in the 
Figure 7. The quadratic error for the Schwarz-Saltikov method was 2.2E-1, while the 
function SA was 8E-2, approximately 5 times smaller error. 
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Figure 7. Comparison between 3D particle size distributions generated by the proposed methodology and the 
classical Schwarz-Saltikov method. 

It is remarkable that even if the error was almost 5 times smaller, the 3D 
distribution was not satisfactory. The function SA was not able to represent a Log-
Normal curve with a Log-Logistic curve, even if both distributions are theoretically 
compatible.  

A proposed solution is to not use a function to represent the 3D particle size 
distribution. Instead, it can be used a constant function or a linear function and let the 
SA algorithm modify it freely. A preliminary result of a constant function modifying 
with modifying step 1E-3 is shown in Figure (8). The 2D input was the same 2D Log-
Normal as the previous example and the 3D result is compared with the previous Log-
Normal.  

 

 
Figure 8. Comparison between 3D particle size distribution: generated by the SA-no function and previous 

Log-Normal function. 
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There is a significant agreement between both functions. The quadratic error for 
this methodology was 1E-2, even smaller than the SA with a function representation. 
This methodology was also tested with the gran size distribution showed in Figure 1. 
The resulting curves are exposed in Figure 9.  

 

 
Figure 9. 3D Curve generated using a SA technique without optimizing a specific function and its 2D cut 

comparing to a sandstone grain size distribution. 
 

An interesting fact is that the new methodology was able to reproduce a bimodal 
function and the 3D generated curve was also bimodal. This new methodology shall be 
further investigated.   

3. Conclusions  

It was proposed a new methodology to model particle size distributions. A SA 
algorithm was used to fit a 3D distribution with virtual cuts and minimizing a 2D 
function, comparing this latter with an input grain size distribution obtained 
experimentally. 

It was tested 4 distribution functions, LogNormal, Fischer-Tippet, Shifted-
Gompertz and LogLogistic. The function which had best performance was the Log-
Logistic distribution, yet, in a simple test of flexibility, it was clear that the 
performance of the function fitting was not adequate.  

A solution was proposed, which is to use a SA algorithm to fit freely a constant 
function. The preliminary tests showed that this algorithm was able to reproduce both a 
3D Log-Normal function and a bimodal input function, indicating that it can be used to 
represent 3D particle size distributions determined from 2D particle size distributions. 
This solution shall be further investigated in future researches.   
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