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Abstract. The recent advances in Smart Manufacturing open opportunities in 
Maintenance and Management of its assets through new support strategies. This 
trend allows the collection of machine operation data in the shop floor, in order to 
interact with cyberspace computers through a communication network, therefore 
enabling the Cyber Physical System concept (CPS). Furthermore, the rapid 
advances of Information and Communications Technology (ICT) provide means to 
analyze Big Data, more quickly, autonomously, ubiquitously and in real time, 
offering information that assist in more efficient decision making in manufacturing 
processes. Nowadays, Prognostic and Health Management (PHM) leverages 
researches in the new generation of manufacturing. For this, an architecture called 
5Cs, that directs the PHM implementation in CPS context is being adopted with 
expressive results, which allows the application of several math and/or Artificial 
Intelligence techniques to estimate the assets’ remaining useful life. In particular, 
the use of Experts Systems and semantic information modeling can make it 
possible to represent knowledge found in the scientific literature and consolidated 
standards about the subject. This paper uses methodology of ontology 
development 101, which guides management, development and documenting of a 
formal taxonomy of failure prognostics. For model creation and evaluation, the 
Protégé suite is used, for it allows future researches to interact with the model, 
such as monitoring techniques and failure diagnostics in order to simulate real 
cases of mechanical components. This way, new possibilities for cyberspace 
oriented application development for industrial machine health management are 
revealed. 

Keywords. Cyber Physical System, Prognostic and Health Management, Smart 
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Introduction 

In the new industrial generation, Cyber-Physical Systems (CPS) represent the 
interaction between physical spaces (sensors, actuators, mobile devices, RFID 
technology, embedded systems and others still) and cyberspace (computing and logical 
algorithms). That interaction must be ubiquitous and in real time through the internet, 
creating the Industrial Internet of Things (IIoT) [1], where the transit of Big Data [2] is 
made possible. 

CPS has several applications in communication, transport, energy, infrastructure, 
health, public security, civil, military, robotic and disasters attendance fields. In the 
field of manufacturing, it improves operation process performance, monitoring and 
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control, developing and implementing measurement techniques, reasoning and 
planning, promoting collaborative and cognitive systems, which aims increasingly the 
inclusion of human being with computational ambient or cyberspace [3]. 

Manufacturing in the CPS context requires Big Data analytics for generation useful 
information towards plenary understanding of systems, subsystems and their 
complexes interactions. According to Gao et al [4] a promising CPS application in the 
Smart Manufacturing context is Prognostics and Health Management (PHM), pointing 
out as an emerging approach of Mechanical Engineer to improve men-machine 
interaction through specific methods that helps to understand the machine behavior and 
assist to make more efficient decisions [5]. 

When PHM is unfold, the resulting prognosis may lead to condition monitoring in 
addition to events such as failure diagnostics [6]. Depending on which kind of data is 
needed to describe the system of interest and predict its future behavior, prognosis 
techniques can be classify as [4, 6, 7] physical models and data-driven approaches to 
estimate Remaining Useful Life (RUL) of a given asset. In particular, data-driven 
approaches use extracted information from historical data for establishing a relationship 
between nominal behavior and real time states of an operation machine, by applying 
either static techniques of Artificial Intelligence (AI). 

On the other hand, the Health Management share refers to decision-making 
supplied by Prognosis through Condition-Based Maintenance (CBM), for carrying out 
appropriate recovery intervention or repair [4]. Between Prognostics and Health 
Management, the Prognostics is regarded the key-process of PHM [8]. In this context, 
AI techniques associated to Expert Systems (ES), based in professional knowledge 
representation of a particular area [9], are promising. Thereby, scientists have 
developed ontologies for knowledge representation, which allow interpretations of 
computer through taxonomies that can assist in inaccurate system function 
identification[10].   

In Manufacturing, PHM has had good results when used in rotating elements, such 
as well as bearing, gears, shaft, impeller, pulley, fans, pumps, turbines, compressors, 
generators, electrical engine and blowers [5]. However, in the early phases of PHM 
development it is necessary the use to analysis techniques for dependability, which is 
the best way of ensure effective machine functioning in a given industrial process. 

On Esmaeilian et al. [11], one of the most accepted architectures for orientating 
PHM implementation as CPS in the Smart Manufacturing is proposed by [12]. It details 
PHM into 5 levels called 5Cs: Connection, Conversion, Cyber, Cognition and 
Configure. The present paper further develops knowledge in data Conversion. 

1. Theoretical Background 

Two topics were considered essential for creating the model definition: dependability 
and methods for ontology engineering. Such concepts and fundamentals bring together 
the necessary expertise for prognostics modeling. 

1.1. Dependability in factories and its attributes 

According to Bukowski [13] dependability can be applied to all technology 
development subjects. Based in IEC 60050-192 [14] standard, dependability of an item 
is deemed to be the ability to perform, a function, as and when required considering 

D.N. Lira and M. Borsato / Dependability Modeling for the Failure Prognostics886



attributes of availability, reliability, recoverability, maintainability and maintenance 
support performance. 

Regarding to prognostics, dependability analysis may potentially lead to better 
monitoring of components in order to ensure high productivity [13]. 

1.2. Threats to dependability 

In process of dependability acquisition, there are threats that may influence the proper 
life cycle functioning of manufacturing systems, either in development stage 
(conception) or in use stage (operation) [15]. Those threats, which may affect 
dependability of an item, can be considered Failure, Error or Fault. 

1.2.1. Failure 

Failure, according to IEC 60050-192 [14], is the loss of ability of a component to 
perform a required function. The failure of a component is an event that results in a 
system fault. According to Avižienis et al. [16], all failures that may affect a system 
during its life are classified as: creation, boundaries, cause, dimension, objective, 
intent, capability and persistence. The present paper discusses failure that can happen in 
a mechanical component (physical failures), resulting from a human action (human-
made failures). 

1.2.2. Fault 

Fault, according to IEC 60050-192 [14], is the incapacity of a system to perform its 
required functions due the functioning deviation of an internal state. Fault in a system 
results from a component failure in its own system or a disability in an earlier stage of 
its life cycle, such as specification, design, manufacture or maintenance. 
In the present study,  faults that may be detected, classified in the detectability 
category, according to events through which the fault presence becomes evident [14]. 

1.2.3. Error 

Error, according to IEC 60050-192 [14], is the discrepancy between a computed, 
observed or measured value or condition, and the true, specified or theoretically correct 
value or condition. Therefore, a procedure that guides the correct choice of technique, 
mechanism or device used to monitor the component behavior is necessary. 

1.3. Means to attain dependability 

The means to achieve dependability, may be categorized as: Failure Prevention, Failure 
Tolerance, Failure Removal and Failure Prognostics [16]. Failure prevention and 
failure tolerance aim to provide the ability to deliver an operation that can be trusted, 
while failure removal and failure prognostics aim to reach confidence in that ability by 
justifying that the functional and the dependability specifications are adequate and that 
the system is likely to meet them. 

Thereby, the present work aims focus in failure prognostics as a way to estimate 
RUL in a given mechanical component. 
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1.4. Dependability analysis techniques 

According to IEC 60300-3-1 [17], there are several techniques that assist in failure 
prognostics, such as: Failure Tree Analysis (FTA), Failure Mode, Effects and 
Criticality Analysis (FMEA), Markov analysis, Hazard and Operability study 
(HAZOP), Petri Net (PN) and Reliability Block Diagrams (RBD) [18]. 

 Vogl, Weiss and Donmez [19] suggest that dependability techniques may be 
classifies into top-down and button-up approaches.  On Sanislav et al. [18], they can be 
divided according to its quantitative and qualitative purpose. In addition, the 
dependability analysis techniques that can assist in the extraction of cause-effect 
relationship might be classified into deductive or inductive. 

Those authors highlight FMEA uses for dependability analysis as it is: (a) a 
qualitative technique for identifying component failure modes; and (b) inductive, 
because it aims the prognostics of potential failures effects from known causes and for 
being a bottom-up approach, which first identifies failure modes in components, then 
establishes its effects. 

1.4.1. Failure Mode and Effect Analysis 

FMEA is a powerful technique used by engineers and reliability analysts to identify 
functions and components in which failure will lead to unwanted results, such as 
production loss, damage or even accidents. The main FMEA purpose is to find out and 
prioritize failure modes potentials through Risk Priority Number (RPN) estimate that 
represent a negative effect on the system and its proper functioning [20]. 

FMEA added to Criticality Analyses is called FMECA. Nowadays, the scientific 
literature considers FMECA and FMEA synonyms, since both identify failure modes, 
their effects, causes and prioritize its relevance through RPN, which is the 
multiplication of obtained values in Severity, Occurrence and Detection [20]. 

The FMEA development must gather technical knowledge, such as standards and 
scientific articles, and this knowledge can be modeled through ontology for several 
applications. Some FMEA applications in manufacture processes using ontology are 
present in Zhao and Zhu [21]. 

In order to find the RPN, it is important to standardize scoring parameters. 
Thereby, the SAE J1739 standard [22] establishes parameters to: specify severity of a 
given failure mode, occurrence for a cause or source cause, and finally presenting a 
classification scale for the probability of failure or cause mode, for detection and/or 
prevention of a cause occurrence in an existing control or system scheduling. 

2. Ontology engineering 

According to Aljumaili et al. [23], the term ontology refers to the philosophy that 
concerns the nature and reality structure. Therefore, ontology engineering focuses on 
nature and structure of things, regardless of its actual existence. In computing, 
specifically in the AI area, ontology building is the technique that represents the formal 
knowledge of a specific interest domain that is shared by a group of people. In some 
manufacturing solutions, the interopeability desired for operating data, used for 
strategic decision-making can be ruled by specific standards through ontology uses.  
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When creating an ontology, it is important to adopt a methodology for arranging 
and defining the construction stages. According to Bautista-Zambrana [24], 
methodologies for building ontologies involve a set of activities such as, 
conceptualisation, formalization, implementation and maintenance. Some highlighted 
methodologies are: Uschold and King’s, METHONTOLOGY, On-To-Knowledge, 
TOVE, OntoClean, DILIGENT, Ontology Development 101 and DOGMA. 

Besides of methodologies, ontology engineering requires tools that support all 
development activities. Commercial tools, such as TopBraid and OntoStudio are 
available, as well as free options, such as OntoEdit, Hozo and Protégé. Among those 
tools, are highlighted those that are not owned, and which have plug-in extensibility, 
along with import and export capabilities in XML (S), OWL, RDF (S) and Excel 
formats, as well as graphical views. The Protégé editor stands out for meeting those 
requirements.  

Protégé is the most used tool for editing ontologies in the scientific world [25, 26]. 
It is developed and maintained by Stanford University, which is also aligned with 
Ontology Development 101. The present work uses Protégé as a modeling tool and 
Ontology Development 101 as the construction approach, as proposed by Natalya and 
Deborah [27], and illustrated in Figure 1. 

 
Figure 1. Stages suggested according to methodology 101, adapted from [27]. 

3. Case study 

3.1. Failures in mechanical components 

The component used in the case study is a bearing that has the function to reduce wear 
on the operating shaft of a centrifugal ventilator. Part of the interaction of its failure 
modes are represented by an ontology that formalizes its dependability analysis through 
FMEA technique. Table 1 highlights the factors to be modeled for the failure mode 
“bearing seized”, having the “overheat” effect, rated severity “8” caused by 
“insufficient lubricant”, rated occurrence “5” with “training” as a preventive control, 
“vibration analysis” as detection control and rated detection “8”. Ontology prognostics 
is modeled considering those characteristics in terms of having obtained the highest 
RPN, which is 320. 

Table 1. FMEA partial for failure prognostics modeling. 

Item/ 
Function 

Failure 
Mode 

Failure 
Effect 

S
E
V 

Possible 
Cause 

O
C
C 

Current Control D
E
T 

RPN 

Prevent 
 

Detect 

Bearing / 
Reduce 
friction of 
the rotating 
shaft 

Bearing 
seized Overheat 8 

Incorrect type 
of lubricant 1 - - 8 64 

wrong 
procedure of 
lubrication 

1 - - 10 80 

insufficient 
lubricant 5 Training Vibration 

Analysis 8 320 
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I. Determine scope 

The ontology domin is failure prognostics, which is a way to achieve dependability 
in manufacturing machines. An ontology can be built to identify failure modes in the 
mechanical component, "bearing". An important aspect when identifying failure modes 
is that there is a dependency of threat types that will rank their nature for future 
analysis. This ontology called OntoProg, maintained by the research group GECVP 
from UTFPR, can be used in various types of industrial process machinery. 

II. Consider reuse 
With the establishment of the scope of ontology, it could be used as a reference to 

ontologies developed in [18]. 

III. Enumerate terms 
Several terms were considered for this ontology related to the threats of 

dependability as the FMEA technique, such as cause, effect, occurrence, severity, 
failure, defect, error, etc. For this step to be standardized the terms and their meanings 
were collected from consolidated standards and scientific articles, related to equipment 
dependability. 

IV. Define Classes 
DependabilityAnalysis is the main class of the proposed ontology and contains 

subclass FailurePrognostics as a way of reaching prognostics, which in turn has 
subclasses Threats and FMEA. Each of these classes has its own subclasses. For example, 
subclass Threats has subclasses: Failure, Fault and Error. The subordination relationship 
between class and subclass is a 'subClassOf' axiom type. The 'DisjointWith' axiom type 
relationship exists between classes, so that the instance contained in it can not be an 
instance of more than one of the involved classes. For example, Failure is DisjointWith 
Fault and Error. So Fault is automatically DisjointWith Failure and Error and Error is 
DisjointWith Fault and Failure. The class hierarchy is presented in Figure 2. 

 

 
Figure 2. Classes hierarchy in OntoProg ontology. 

V. Define properties 
There are three types of properties: ‘Object Property’, that establishes a 

relationship between two ontology classes, ‘Data Property’, which lists the classes with 
different data types and ‘Annotation Properties’, which enables adding information to 
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classes, instances (objects) and even other types of properties. Below are detailed 
properties and their corresponding Ranges. Figure 3 shows properties of the classes in 
Protégé: Object Properties: hasCause (Cause), hasControl (Control), hasEffect (Effect), 
hasMode (ModeFailure), isResultedOf (Failure) and isCausedBy (Failure); Data Property 
– hasDetection (integer), hasOccurence (integer), hasSeverity (integer). 

 

 
Figure 3. Proprieties in OntoProg. 

VI. Define constraints 
At this stage transitive properties are defined. For example, if instance "Bearing" 

hasCaused an instance of the class Cause and this cause isResultOf an instance of Failure 
class then the instance "Bearing" isResultOf an instance of the class Failure. Therefore, 
inferences of type the "Bearing" also isResultedOf of Accidental, NonDeliberate 
Incompetence and NonMalicious failures can be performed, as shown in Figure 4. 

 

 
Figure 4. Transitive restrictions for generating instances in in OntoProg. 

VII. Create instances 
Instances are designed to: Cause, Control, Effect, Modefailure, Failure and 

FaultDetectability. Figure 5 presents instances of Failure Class. In this connection, it can 
be seen that the purple color arrows refer to subClassOf property, blue arrows are Types 
properties, and orange dashed arrows are the isCausedBy object properties. 
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Figure 5. Instances of Class Failure in OntoProg ontology. 

4. Testing and Results 

The proposed model of dependability analysis can be interpreted, accessed and updated 
in real time by cyberspace for some applications in failure prognostics. For this, the 
model must be tested first. This is possible with SPARQL that performs query ontology 
language  (SPARQL Protocol and RDF Query Language) for being the most used form 
[28].  

Protégé provides an editor to create SPARQL queries. In it, it uses utfpr prefix to 
connect with the dependability analysis model called untitle-ontology-111, Figure 6. 

That way, the query in the SPARQL OntoProg ontology can be used to find, for 
example, within class Failure, all X instances that have isCausedBy Y property, as 
shown in Figure 6. These results can be used by software applications through APIs, 
such as Jena Semantic Web Toolkit and Jena Fuseki. 

 

 
Figure 6. Failure Class instances in Protégé. 
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5. Final remarks and future work 

This paper deals with CPS scientific challenges related to the development of new 
PHM models , including threat identificating methods (Failure, Fault and Error). In 
addition, this article seeks to establish the theoretical foundations for dependability 
modeling of failure prognostics in the CPS context. In this regard, the article proposes a 
methodology to ensure the PHM dependability, by suggesting a model to adapt in a 
dynamic and evolving context in cyberspace. The methodology uses the FMEA 
technique as dependability analysis and Ontology Development 101, built upon seven 
stages. 

The model is implemented in Protégé and all the necessary steps for their 
generation were detailed. In addition, tests were carried out through queries in 
SPARQL, which show that the model can be used by other applications in the CPS 
context, highlighting its scalability and usability. 

The model integration methods for determining failure diagnostics and condition 
monitoring techniques within the PHM context will be subject of future work. 
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