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Abstract. Object clustering is a fundamental task in many data analysis and 
pattern understanding applications by providing insights into detecting the 
underlying structures of a large collection of samples. In this paper, we present our 
work on a novel spectral clustering algorithm that partitions a collection of objects 
using the spectrum of adistance matrix. If the nodes in a metric space can be 
associated with a well defined distance, the distance matrix is almost negative 
definite, implying that the eigenvector for the smallest eigenvalues of this matrix 
can be used as an approximation of the solution to a quadratic form partition 
problem. It is proved that this smallest eigenvalue is equivalent to the second 
largest singular value. Therefore Lanczos iterative algorithm can be applied to 
findingthe eigenvalues efficiently. We adapted this algorithm to the distributed 
network community detection problem using a decentralized multi-agent 
framework, and tested the effectiveness of the proposed approach with simulations. 
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Introduction 

The rapid penetration of the mobile Internet has facilitated the growing popularity of 
numerous social networks and their respective applications, enabling social networks to 
play increasingly important roles in disseminating information and aggregating public 
opinions. In practice, many social networks can be effectively modeled as multi-agent 
systems, in which each agent only interacts locally with a small number of other 
agents. Within many social networks, the direct connections among the network users 
are established by personal ties in the first place, thus forming some possibly 
overlapped circles of friends in different sizes. In general, community structures exist 
in various networks, and the communities may evolve with memberships changing 
over time. Detecting community structures is a challenging problem in many scientific 
and engineering fields and various algorithma have been proposed to solve tis problem 
in different contexts[1,2]. Because there is no centralized coordinating entity existing in 
social networks, finding individuals with shared interest or similar pattern is not a 
simple task. In this paper, we intend to investigate a distributed way to allow the users 
to detect the networks communities consisted of similar users only using the local 
communications.  
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In the fields of data mining and machine learning, clustering is a critical step to 
process the data samples for the purpose of dimensional reduction or pattern detection. 
Though there is no universally accepted precise definition for the term clustering, 
clustering can be roughly treated as grouping the similar objects while separating the 
dissimilar ones. Many clustering techniques have been developed over years, including 
k-means, hierarchical clustering, density-based clustering and graph-based clustering, 
just to name a few. With the help of the singular value decomposition (SVD) and graph 
cut theory, spectral clustering makes use of the distance/similarity matrix of the dataset 
by examining its eigenvalues and eigenvectors. In different settings, large eigenvalues 
or the second smallest eigenvalue provide insights into finding cluster structures in the 
data[3,4]. In [3], the eigenvectors corresponding to the top eigenvalues are used to 
approximate the data points in a lower dimensional space and k-means algorithm can 
be applied on top of this result. In [4], the eigenvector for the second smallest 
eigenvalue of the symmetric normalized Laplacian matrix is used to partition the data 
into two subsets and hierarchical partitioning can be carried out within each subset. 
Either way, the number of clusters, k, or the quality of clusters must be predefined to 
make the process feasible. For example, in [5] the authors proposed an  measure 
for the clustering quality, and [6] presented a self-tuning optimization framework to 
find the best-fit number of clusters. However, making assumption on the parameters is 
a subtle issue when the data distribution may vary greatly from case to case. Another 
interesting development related to spectral clustering is the decentralized versions of 
the spectral analysis algorithms by computing the eigen-decomposition of the weighted 
adjacency matrix with power iteration, QR decomposition or Lanczos algorithm in a 
distributed fashion[7, 9-11].   

The work in this paper is motivated by the following facts: first, because of the 
large size of the social network and the need of privacy protection, it is unrealistic to 
rely on a single node of authority in the network to detect the similarity based 
communities and inform the rest of the network of the result[7]; second, in multi-agent 
systems, many collective objectives can be achieved by local interactions and simple 
evolutionary dynamics; finally, there are extensive applications of consensus 
algorithms in networked systems[8,9]. The contributions of this paper are: we propose 
a novel approach that makes use of the eigenvectors of the distance matrix that are 
corresponding to the negative eigenvalues to bisect the set of nodes recursively by 
introducing two partitioning quality indices for single eigenvector and cross 
eigenvectors, without the need to estimate explicitly the number of clusters; in the 
mean time, we introduce a distributed algorithm that is able to perform the spectral 
analysis for the distance matrix (not identical to adjacency matrix) overlaying the 
communication network, without exchanging the distance information between nodes. 

The rest of the paper is organized as follows. In Section 1,we formulate the 
problem and present the definitions and algorithms used for distance matrix based 
spectral clustering; then in Section 2, we discuss the design of the distributed version of 
the Lanzcos algorithm that prepares the necessary data for each node to find the 
identical clustering outcome simultaneously. The experiments for some synthesized 
data and benchmark data are provided and analyzed in Section 3, showing the 
effectiveness the proposed approach. And finally in Section 4 we conclude this paper 
by remarking the proposed future research. 
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1. Problem formulation and the proposed clustering approach 

In a metric space, pairwise distance is defined for points in that space, satisfying the 
following properties: symmetric, nonnegative and the triangle inequality. It is 
reasonable to assume that any user in a social network is able to find the distance 
between any other user and itself, provided that the users not directly interacting may 
observe the states and behaviors of others. We do not need the specific description of 
the space, as long as the distance metrics can be measured by the users on their own. 
Given a set of  users , and their distance measures (represented by the 
distance matrix A, where ), the clustering objective is to partition all the 
users into a number of disjoint subsets (assuming this number is unknown a priori), 
such that the members in the same subset are close in distances, and the members 
belonging to different subsets are not as close. One can find many different versions of 
the clustering approaches, in this paper, we adopt the partition cost function 

 (1) 

to find the two subsets of users, with -1 and 1 being the respective membership values. 
Since the above optimization problem is hard to solve, we take the similar spectral 
heuristics as in the normalized cut method [4]. Because the smallest negative 
eigenvalue of the matrix , ,  is the minimum of ’s Rayleigh quotient problem 

 (2) 

we will use , the normalized eigenvector to find the approximate solution to (1). 
However, we will not take the hierarchical partitioning to find the clusters as proposed 
in [4], to avoid the repeated eigen-decompositions for reduced distance matrices. 
Instead, we wish we could find the final cluster structures with the eigen-pairs of the 
original . 

 
Lemma 1. Given a well-defined distance matrix , there exists a set of points of 
points in dimensional Euclidean space, , such that.

 
 
Definition 1[12]. A real symmetric matrix with zero diagonal entries is said to be 
almost negative definite if  for all vectors  satisfying , where 

. 
 

It is proved in [12] that for a set of points , the matrix 
 ( is the Euclidean distance between  and ) is almost 

negative definte. 
 
Lemma 2. If  is a well-defined distance matrix,  is also a well-
defined distance matrix. 
 

Therefore we have the following property for the distance matrices. 
 
Theorem 1. The matrix  is almost negative definite. 
 
Theorem 2. A nonsingular   has  negative eigenvalues. 
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Because A has only 0’s on its main diagonal, , thus we have the 

following conclusion. 
 

Corollary 1. Let the distance matrix A have eigenvalues , is the 
second largest singular value of A. 
 

Denote a column of A as ,  can be considered as a 
point in a high dimensional Euclidean space. Though in this paper, we will not apply 
the algorithms such as MDS to find a low dimensional space to embed these points, it 
is rather straightforward to conclude that the eigenvectors corresponding to the larger 
singular values of A constitute a subspace that approximates the coordinates of the 
related points. It is worth mentioning that the leading singular value plays a less 
important role than the singular values next to it in partitioning data points into clusters 
because the spread of its eigenvector components is relatively small due to the fact that 
all its components have the same sign (see Figure 1). In this sense, is the most 
significant eigenvector in partitioning data points into clusters. 

 
Figure 1.Unsorted (left) and sorted (right) eigenvectors corresponding to the top 4 singular values, black is 

for the leading one. 
 

Corollary 2. Let  be the ith column of the distance matrix A, when the eigenvector 
components of the leading eigenvalue are identical, i.e.,  , 
then we have the bounds . 

 
According to the above results, we attempt to partition the set into the two based 

on the maximal gap between two subsets of eigenvector components. The first step is 
to sort the eigenvector entries of , then we examine the differences between a pair of 
adjacent entries in the sorted eigenvector for the maximum, instead of using whether 

 as the criterion as in the standard normalized cut[4] to avoid separating a 
proper cluster in the middle. However, if there are outliers located far away from the 
mass of data points, the maximal gap could lie between these outliers and the rest of the 
data, resulting in trivial clustering. To prevent singling out only the outliers, we expect 
that the best cut should generate practically balanced groups of data by introducing a 
cut quality index for eigenvector . 
 
Definition 2 (intra-vector cut quality). The cut quality for a pair of components i and 
j neighboring in values for a sorted of eigenvector ’s components is defined a 
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where  represents the cardinality of a set, and is the range 
of all components in u_k. The best cut for  is denoted . 

In Figure 2 are the best partition results of the few eigenvectors for the smallest 
eigenvalues of the distance matrix, obtained with the help of the cut quality as defined 
in Definition 2. 

 

 
Figure 2.The best partition results based on eigenvectors for 5 Gaussian clusters. 

 
The intersections of these partitions generated by the properly selected 

eigenvectors are plausible candidates for the clustering results. Since  achieves the 
optimum of problem (2), it may naturally separate data points into multiple different 
clusters to a greater degree of robustness than the other eigenvectors. It is attracting to 
take each of the eigenvectors associated with large negative eigenvalues to infer more 
than one cut of the dataset. As faced by other hierarchical cutting techniques, 
continuing to refine the cuts has to stop when certain condition is met, but this 
condition depends on the way to define a cluster, which is also a challenging issue in 
nature. In order to not explicitly specify the measurement of the cluster quality with the 
distance/similarity information of all points, we desire to rely only on the eigenvectors 
per se. Consequently, we propose a quality index to compare cuts between different 
eigenvectors, combining Corollary 2 and Definition 2, i.e., . By doing so, we 
may find the successively cuts of the data with respect to a given eigenvector , as 
long as these cuts are better than , the best quality rendered by the 
eigenvector next to it. 
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Since we limit ourselves to performing data clustering exclusively dependent on 
the eigen-decomposition of the distance matrix, to find the exact number of clusters 
remains a critical challenge. We will not estimate this number in the proposed approach, 
instead we assume that the minimal size of a cluster ( ) and the maxmal number of 
clusters ( ) are available a priori. Specifically we base the procedure on the following 
observations: first, when the eigenvalues become insignificant in magnitude, they 
present a pattern of disorder and will cut almost all found clusters into two, making the 
number of intersections nearly doubled (to be orthogonal to the eigenvectors of 
eigenvalues with large absolute values, see Figure 2), and lead to the poor cut quality 
by splitting every cluster into two subsets; second, when the magnitudes of some 
eigenvalues are not sufficiently small and may be able to result in acceptable partitions, 
they will not add new value to the whole procedure since the partitions made by the 
earlier cuts with respect to eigenvectors corresponding to large magnitude eigenvalues 
(given the sensitivity of the eigenvectors for eigenvalues close to zero, they may bring 
in additional noise by creating new intersections with a few data points other than only 
repeat what has already been found). Therefore, if we make practical assumptions on 
the smallest size of a cluster, as well as the maximal possible number of clusters, we 
then can force the clustering routine to stop if either the number of possible clusters 
would have been doubled and exceed the given bound, or the new cut would not give 
new clusters. This is summarized into the proposed algorithm as listed in Table 1. 

 
Table 1. Distance matrix based spectral clustering algorithm. 

Step 1 set  and  
initialize the cluster set as the containing only singleton,  

Step 2 for i = n down to 2 
sort u_i by the  entries in descent order 
 for j = 1 to n/2 + 1 

calculate  
store the current maximum to  

end 
end 

Step 3 for i=n down to 3 
for j = 1 to n-1 

find j such that  
use j found above to cut the dataset into two disjoint subsets 
find the intersections with cardinality   of the subsets just found and  
if no new intersection is found 

continue 
end 
if the number of intersections  

go to step 4 
end  
set the intersections as members of  

end   
end 

Step 4 return  
 
In practice, only a few eigenvectors are needed in clustering because in general the 

eigenvalues dwindle fast in magnitude. 
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2. Distributed spectral algorithm 

In this section, we discuss the design and implementation of a distributed approach that 
allows the users in a connected social network to finish the spectral analysis of the 
distance matrix locally and use the eigen-decomposition results to find all the clusters 
independently, without collecting distance information from other users. This objective 
is achieved by applying average consensus algorithm to exchange the necessary data to 
construct the tri-diagonal matrix with the help of Lanczos algorithm[13]. It is known 
that by introducing a good weight matrix, a multi-agent system may reach distributed 
consensus or average consensus. The problem setup in this paper assumes that the 
communication network topology may not be coincidental to the distances determined 
by the other user features. We also suppose that any user is capable of finding the 
distances to others, but will not share the data.  In order to implement the average 
consensus algorithm, we require each user to select  neighbors using the existing 
topology until a connected network thus built is confirmed. Once the symmetric double 
stochastic weight matrix gets set, the information exchange process is characterized by 
the following dynamics:  . It follows that 

. 
In the iterations of Lanczos algorithm, the only information that needs the 

coordination of different users is the vector . Because each user i has only distances 
measured between itself and other users, the user is able to update just the component 

. Since the weight matrix is chosen to achieve average consensus, it is expected 
that the users will converge to the vector , where  represents the initial 

vector at the user i. If a user only sets , and all other , then 
when the consensus is reached, each user has . This process is listed in 
Table 2, where the inputs of maximal steps  and the error bound  are required. 

 
Table 2. Distributed average consensus algorithm for user i. 

Step 1 user  selects  neighbors , set W(i,j)=1/(K+1), if j=i or  
initialize vector  
send  to neighbors in  
set  

Step 2 update  
Step 3 if  

go to Step 4 
if  
   go to step 4 
set  
go to Step 2 

Step 4 return  
 

Therefore, by applying this simple average consensus process, the Lanczos 
iterations can find a tri-diagonal matrix T that is similar to A (see Table 3). The eigen-
decomposition for T is relatively cost-effective and can be performed by an individual 
user. After the eigenvalues/eigenvectors are available to each user’s, the spectral 
clustering proposed in Section 1 will generate the same results and the users then can 
decide the clusters to which they belong. Lanczos algorithm may terminate at iterations 
fewer than when we accept approximate solutions to eigenvectors for the most 
significant eigenvalues. 
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Table 3. Decentralized Lanczos algorithmfor  at user i. 

Step 1 user I has its distances to other users measured, and knows the size n  
initialize  

Step 2  
set  
apply average consensus to get  

 
 

 
Step 3 if  and  

     go to Step 2
Step 4 

return   

 

3. Experiments and analysis 

In this section, we look at the performance of the proposed approach by applying it to 
different datasets. Though the porposal was first designed to solve clustering problems 
for mixed Gaussian data (balls in space, as shown in Figure 2), it also works for other 
data as long as the clusters are separated well by between-cluster distance (see Figure 3) 
in a properly designed distance measure. It is noted that the Euclidean distance used in 
Figure 3 is not a proper choice for these connected structures, nonetheless the proposal 
is able to find the correct clusters since the eigenvector  has sufficient gaps between 
different groups of entries.  
 

 
Figure 3.Clustering result using eigenvector  (left) and the distribution of the top 4 significant 

eigenvectors (right). 
 

An interesting question is the choice of distance measures in different applications. 
We only considered the most straightforward way to define distance in the tests in this 
paper and believe more advanced distance functions will reach more accurate results. 
One example is the typical classification benchmark, the Iris dataset. In the test, we 
used the Euclidean distance of the five normalized attributes. Clearly, the proposed 
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approach found the correct number of clusters, while Iris-versicolor and Iris-verginica 
got mixed results due to the closeness in distance (Table 4), and Iris-sentosa stood out 
of the rest. 

Table 4 Confusion matrix for Iris classes. 
 Iris-setosa Iris-versicolor Iris-virginica 
Iris-setosa 98% 0% 2% 
Iris-versicolor 0% 88% 12% 
Iris-virginica 0% 28% 72% 

The distance used in the Thackeray Karate club dataset is the pairwise shortest 
path with each link assigned a unit distance. To test the distributed algorithm, we 
applied the average consensus algorithm to pass the messages between nodes. Four 
clusters were found in this case, as shown in Figure 4. 

 
Figure 4.Clustering result of Karate club. 

 

 
Figure 5.Convergence speed of average consensus in number of iterations, given 100 nodes. 

 
As shown in Figure 5, the number of iterations needed to make consensus in a 

netwrok of 100 nodes is related to the connectivity. If each one is connected to more 
than 10% of all nodes, the average consensus can be reached in roughly 10 iterations. 

4. Concluding remarks 

The users of social networks may derive similarities based on the their attributes other 
than the existing connectivity, therefore, evolve into new communities with similar 
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members on top of the communication topology is an important phenomenon observed 
in many of today’s social network applications. We adapt the spectral clustering 
framework to a decentralized scheme. In general, a user may not be willing to share 
sensitive information with others. In order to let individual users detect the global 
cluster structures, we apply average consensus algorithm and Lanczos iterations to 
allow the users to exchange only the necessary messages.In this paper, we first 
proposed a distance matrix based clustering approach that makes use of its eigenvectors 
corresponding to the significant negative eigenvalues. We also presented 
ourinvestigation on evaluate the partition quality within an eigenvector (balancing the 
gap sensitivity and cluster size) and between eigenvectors (considering both the gap 
and eigenvalue). We developed the algorithm that can have multiple cuts on a single 
eigenvector and use the intersections of different cuts to form clusters. Then we 
discussed the conditions to make the partition process to terminate, using the 
reasonable assumptions on the minimal size of a cluster and the maximal possible 
number of clusters. In the simulations, we tested both synthesized and benchmark 
datasets, showing that the proposed approach worked effectively in both cases. 
However, in this paper, we suppose that the users have the global observation on others, 
which may not be true for all situations. Second, the partition quality is designed to 
separate clusters without overlapping. Third, while it is acceptable to run the 
distributed calculation in a synchronous way, it is much helpful to let the users detect 
the communities asynchronously because realistically the users may join or leave the 
social networks at ant time. These will be attractive subjects for our future research. 
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